• Title/Summary/Keyword: Structural Weight

Search Result 2,484, Processing Time 0.034 seconds

Sialoglycoproteins of Mammalian Erythrocyte Membranes: A Comparative Study

  • Sharma, Savita;Gokhale, Sadashiv M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.12
    • /
    • pp.1666-1673
    • /
    • 2011
  • The presence of sialoglycoproteins (SGPs) in the membranes from goat (Capra aegagrus hircus), buffalo (Bubalus bubalis bubalis) and pig (Sus scrofa domestica) erythrocytes was investigated by partial purification with a chloroform-methanol extraction method followed by Sodium dodecyl sulphate - Polyacrylamide gel electrophoresis in comparison to human (Homo sapiens) erythrocytes. The results show that mammalian erythrocytes possess clear differences in the SGPs numbers and molecular weights although all animals studied in this experiment are from the same class i.e. mammalia. The SGPs number in human, goat, buffalo and pig are four (PAS-1 to PAS-4), ten (PAS-GI to PAS-GX), seven (PAS-BI to PAS-BVII) and four (PAS-PI to PAS-IV) respectively as indicated by staining the polyacrylamide gel with sialoglycoprotein-specific Periodic acid-Schiff's (PAS) stain. The new SGPs could be observed only after the partial purification of membrane fractions named as PAS-HI with molecular weight (Mr) 190 kDa and PAS-HII 150 kDa in human, PAS-BIA in buffalo and PAS-PIA and PAS-PIVA in pig. The gels were also stained with Coomassie brilliant blue (CBB) and Silver stain to check the contamination of other membrane proteins in the purified fractions. The quantitative distribution of SGPs was also determined by densitometry. Present study indicates that there are some basic differences in mammalian erythrocyte membrane SGPs, especially with respect to their number and molecular weights indicating major structural variations.

Size-dependent dynamic stability of a FG polymer microbeam reinforced by graphene oxides

  • Wang, Yuewu;Xie, Ke;Fu, Tairan
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.685-698
    • /
    • 2020
  • The dynamic stability of a functionally graded polymer microbeam reinforced by graphene oxides subjected to a periodic axial force is investigated. The microbeam is assumed to rest on an elastic substrate and is subjected to various immovable boundary restraints. The weight fraction of graphene oxides nanofillers is graded across the beam thickness. The effective Young's modulus of the functionally graded graphene oxides reinforced composite (FG-GORC) was determined using modified Halpin-Tsai model, with the mixture rule used to evaluate the effective Poisson's ratio and the mass density. An improved third order shear deformation theory (TSDT) is used in conjunction with the Chebyshev polynomial-based Ritz method to derive the Mathieu-Hill equations for dynamic stability of the FG-GORC microbeam, in which the scale effect is taken into account based on modified couple stress theory. Then, the Mathieu-Hill equation was solved using Bolotin's method to predict the principle unstable regions of the FG-GORC microbeams. The numerical results show the effects of the small scale, the graphene oxides nanofillers as well as the elastic substrate on the dynamic stability behaviors of the FG-GORC microbeams.

Collaborative optimization for ring-stiffened composite pressure hull of underwater vehicle based on lamination parameters

  • Li, Bin;Pang, Yong-jie;Cheng, Yan-xue;Zhu, Xiao-meng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.373-381
    • /
    • 2017
  • A Collaborative Optimization (CO) methodology for ring-stiffened composite material pressure hull of underwater vehicle is proposed. Structural stability and material strength are both examined. Lamination parameters of laminated plates are introduced to improve the optimization efficiency. Approximation models are established based on the Ellipsoidal Basis Function (EBF) neural network to replace the finite element analysis in layout optimizers. On the basis of a two-level optimization, the simultaneous structure material collaborative optimization for the pressure vessel is implemented. The optimal configuration of metal liner and frames and composite material is obtained with the comprehensive consideration of structure and material performances. The weight of the composite pressure hull decreases by 30.3% after optimization and the validation is carried out. Collaborative optimization based on the lamination parameters can optimize the composite pressure hull effectively, as well as provide a solution for low efficiency and non-convergence of direct optimization with design variables.

Ultimate strength behavior of steel-concrete-steel sandwich beams with ultra-lightweight cement composite, Part 2: Finite element analysis

  • Yan, Jia-Bao;Liew, J.Y. Richard;Zhang, Min-Hong
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1001-1021
    • /
    • 2015
  • Ultra-lightweight cement composite (ULCC) with a compressive strength of 60 MPa and density of $1,450kg/m^3$ has been developed and used in the steel-concrete-steel (SCS) sandwich structures. This paper investigates the structural performances of SCS sandwich composite beams with ULCC as filled material. Overlapped headed shear studs were used to provide shear and tensile bond between the face plate and the lightweight core. Three-dimensional nonlinear finite element (FE) model was developed for the ultimate strength analysis of such SCS sandwich composite beams. The accuracy of the FE analysis was established by comparing the predicted results with the quasi-static tests on the SCS sandwich beams. The FE model was also applied to the nonlinear analysis on curved SCS sandwich beam and shells and the SCS sandwich beams with J-hook connectors and different concrete core including ULCC, lightweight concrete (LWC) and normal weight concrete (NWC). Validations were also carried out to check the accuracy of the FE analysis on the SCS sandwich beams with J-hook connectors and curved SCS sandwich structure. Finally, recommended FE analysis procedures were given.

Approximation Method to Estimate Water Entry Impact Forces Acting on Light Weight Torpedo (경어뢰 입수 충격력의 근사화)

  • Chan-Ki Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.77-87
    • /
    • 2000
  • The water entry forces acting on an air-dropped torpedo are of the restrictions on launch speed and launch altitude, because it could cause the structural damage to components of torpedo. Therefore, it is necessary to estimate the water entry forces with confidence according to launch conditions. In this study, an approximation method for water entry forces is presented, and the results using this approximation are compared with those of other numerical methods. The magnitude and duration of impact forces estimated by the present approximation agree with those of impact by the analysis of ideal or viscous flow. This method can give useful tools to select the launch in initial design stage.

  • PDF

Improving Impact Resistance of Polymer Concrete Using CNTs

  • Daghash, Sherif M.;Soliman, Eslam M.;Kandil, Usama F.;Taha, Mahmoud M. Reda
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.4
    • /
    • pp.539-553
    • /
    • 2016
  • Polymer concrete (PC) has been favoured over Portland cement concrete when low permeability, high adhesion, and/or high durability against aggressive environments are required. In this research, a new class of PC incorporating Multi-Walled Carbon Nanotubes (MWCNTs) is introduced. Four PC mixes with different MWCNTs contents were examined. MWCNTs were carefully dispersed in epoxy resin and then mixed with the hardener and aggregate to produce PC. The impact strength of the new PC was investigated by performing low-velocity impact tests. Other mechanical properties of the new PC including compressive, flexural, and shear strengths were also characterized. Moreover, microstructural characterization using scanning electron microscope and Fourier transform infrared spectroscopy of PC incorporating MWCNTs was performed. Impact test results showed that energy absorption of PC with 1.0 wt% MWCNTs by weight of epoxy resin was significantly improved by 36 % compared with conventional PC. Microstructural analysis demonstrated evidence that MWCNTs significantly altered the chemical structure of epoxy matrix. The changes in the microstructure lead to improvements in the impact resistance of PC, which would benefit the design of various PC structural elements.

A Study on Statistical Analysis of Load Carrying Capacity of Steel Bridges (강도로교의 내하력 통계분석과 해석에 관한 연구)

  • Chang, Dong Il;Lee, Hee Hyun;Eom, Yeong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 1988
  • Fatigue phenomena usually occur in the structures such as bridges subjected to repeated loading with increasing service year. Especially, applied stresses happen to approach to design values due to rapid increase of traffic volume and vehicle weight, so it gives serious effects to the stability of bridges. Therefore, in this paper, the data for load carrying capacity of bridges obtained from field tests were analysed statistically to investigate bridge behaviour and a basic approach to estimate the impact factor was proposed after a comparison war made between field-test data and the calculated values obtained by using matrix structural analysis method.

  • PDF

Evaluation of Safety Factors for the Soft Ground Breakwater Design (연약지반방파제의 설계를 위한 안전율 평가)

  • 권오순;장인성;박우선;염기대
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.4
    • /
    • pp.197-206
    • /
    • 2003
  • A new type of breakwater, which can be applicable to soft ground without special treatment because of its light self weight and structural characteristic of bottom wall, has recently been developed. The objective of this study is to propose an evaluation method of safety factor for the new type of breakwater considering 3 categories of sliding, overturning, and bearing capacity. Previous method for gravity type of breakwater was modified and the proposed method was verified by comparing the safety factors with maximum lateral displacements, which were obtained from finite element analysis for various types of breakwaters and ground conditions. The results showed the newly proposed evaluation method of safety factors could reasonably be utilized.

Convergence Enhanced Successive Zooming Genetic Algorithm far Continuous Optimization Problems (연속 최적화 문제에 대한 수렴성이 개선된 순차적 주밍 유전자 알고리듬)

  • Gwon, Yeong-Du;Gwon, Sun-Beom;Gu, Nam-Seo;Jin, Seung-Bo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.406-414
    • /
    • 2002
  • A new approach, referred to as a successive zooming genetic algorithm (SZGA), is Proposed for identifying a global solution for continuous optimization problems. In order to improve the local fine-tuning capability of GA, we introduced a new method whereby the search space is zoomed around the design point with the best fitness per 100 generation. Furthermore, the reliability of the optimized solution is determined based on the theory of probability. To demonstrate the superiority of the proposed algorithm, a simple genetic algorithm, micro genetic algorithm, and the proposed algorithm were tested as regards for the minimization of a multiminima function as well as simple functions. The results confirmed that the proposed SZGA significantly improved the ability of the algorithm to identify a precise global minimum. As an example of structural optimization, the SZGA was applied to the optimal location of support points for weight minimization in the radial gate of a dam structure. The proposed algorithm identified a more exact optimum value than the standard genetic algorithms.

Investigation of Cutting Conditions for Stable Machining and Machinability Evaluation in Milling Process of Al7050-T7451 by Response Surface Methodology (Al7050-T7451 소재의 밀링가공에서 반응표면법에 의한 가공성평가 및 가공안정화를 위한 절삭조건선정)

  • Koo, Joon-Young;Cho, Mun-Ho;Kim, Hyuk;Kim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.284-290
    • /
    • 2014
  • Aluminum alloy is a core material for structural parts of aircraft and automobiles to reduce the weight and maintain high specific strength. This study evaluates the machinability and investigates the optimal cutting conditions considering the surface integrity and productivity for Al7050-T7451 milling. The machining variables considered are the feed per tooth, spindle speed, axial depth of the cut, and radial depth of the cut. The machinability evaluation of Al7050-T7451 is conducted by analyzing the cutting force signals, acceleration signals, AE signals, and machined surface conditions. The optimal cutting conditions are determined by analyzing the experimental results using response surface methodology for stable machining considering the productivity and surface integrity.