• Title/Summary/Keyword: Structural Weight

Search Result 2,484, Processing Time 0.03 seconds

Computational Analysis of the Jinjeonsaji Three-Storied Stone Pagoda through the Finite Element Method (유한요소법을 이용한 진전사지 삼층석탑의 전산해석)

  • Kim, Kyun-Ho;Chung, Jae-Ung
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.6
    • /
    • pp.213-221
    • /
    • 2008
  • In order to examine the safety of stone-built historic properties, it is necessary to apply different methods to the properties according to their categories, respectively. However, there is no consensus for the criteria on which item should be examined. To make systematic preservation plans for the historic stone buildings, it must be requested to consider various factors such as weights, structural imperfections, and natural disasters and so on. In this paper, the Jinjeonsaji three-storied stone pagoda were numerically analyzed through the finite element method to measure its weight and slope. In addition, it was studied how slope variations of the stone pagoda affect to the deflections and stresses caused by its weight. Finally, criterions were proposed to examine the safety of the stone pagoda.

Behavior of dry medium and loose sand-foundation system acted upon by impact loads

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.703-721
    • /
    • 2017
  • The experimental study of the behavior of dry medium and loose sandy soil under the action of a single impulsive load is carried out. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depth ratios within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil and then recorded using the multi-recorder TMR-200. The behavior of medium and loose sandy soil was evaluated with different parameters, these are; footing embedment, depth ratios (D/B), diameter of the impact plate (B), and the applied energy. It was found that increasing footing embedment depth results in: amplitude of the force-time history increases by about 10-30%. due to increase in the degree of confinement with the increasing in the embedment, the displacement response of the soil will decrease by about 25-35% for loose sand, 35-40% for medium sand due to increase in the overburden pressure when the embedment depth increased. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency, moreover, soil density increases with depth because of compaction, that is, tendency to behave as a solid medium.

Design Validation through Analysis of Concrete Modular Road Behavior under Static Axial Loads (콘크리트 모듈러 도로 축하중 거동 분석을 통한 설계 타당성 검증)

  • Nam, Jeong-Hee;Kim, Woo Seok;Kim, Ki Hyun;Kim, Yeon Bok
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.37-45
    • /
    • 2015
  • PURPOSES : The purpose of this study is to validate the design criteria of the concrete modular road system, which is a new semi-bridge-type concept road, through a comparison of numerical analysis results and actual loading test results under static axial loads. METHODS : To design the semi-bridge-type modular road, both the bridge design code and the concrete structural design code were adopted. The standard truck load (KL-510) was applied as the major traffic vehicle for the design loading condition. The dimension of the modular slab was designed in consideration of self-weight, axial load, environmental load, and combined loads, with ultimate limit state coefficients. The ANSYS APDL (2010) program was used for case studies of center and edge loading, and the analysis results were compared with the actual mock-up test results. RESULTS : A full-scale mock-up test was successfully conducted. The maximum longitudinal steel strains were measured as about 35 and 83.5 micro-strain (within elastic range) at center and edge loading locations, respectively, under a 100 kN dual-wheel loading condition by accelerating pavement tester. CONCLUSIONS : Based on the results of the comparison between the numerical analysis and the full-scale test, the maximum converted stress range at the edge location is 32~51% of the required standard flexural strength under the two times over-weight loading condition. In the case of edge loading, the maximum converted stresses from the Westergaard equation, the ANSYS APDL analysis, and the mock-up test are 1.95, 1.7, and 2.3 times of that of the center loading case, respectively. The primary reason for this difference is related to the assumption of the boundary conditions of the vertical connection between the slab module and the crossbeam module. Even though more research is required to fully define the boundary conditions, the proposed design criteria for the concrete modular road finally seems to be reasonable.

A Study on the Compatibilization of Blends Based on Poly(phenylene ether) and Polyamide (Poly(phenylene ether)/Polyamide 블렌드의 상용화에 관한 연구)

  • 김형수;임종철
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.441-449
    • /
    • 2001
  • Compatibilization of blends based on poly(phenylene ether) (PPE) and polyamide (PA) has been practiced with the incorporation of a copolymer formed by grafting polystyrene onto polybutadiene latex (g-BS) which is further functionalized with maleic anhydride (MAH) (g-BS*) to impart reactivity with amine groups of PA. The major focus has been placed on the effect of the various structural factors in g-BS8 on the phase morphology and mechanical performance of the blends. For the balance of impact strength and heat resistance, it was important to locate g-BS n particles inside of the PPE phase, which was accomplished by the proper control of the molecular weight and amount of PS in g-BS*. For g-BS*'s having constant molecular weight and amount of PS, the reduction of MAH content or increase of rubber particle size in g-BS* resulted in the increase of domain size and consequently loss in mechanical properties. Based on the comparison made with the conventional PPE/PA blend comprising MAH grafted PPE as a compatibilizer, it was confirmed that the comparable level of mechanical performance can be achieved by an appropriate g-BS* type material with improved whiteness index.

  • PDF

Molecular Area and Interfacial Tension Behavior of High Efficiency Cosurfactants (보조계면활성제의 계면에서의 분자면적과 계면장력 거동)

  • Kim, Chunhee
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • Gibbs' adsorption isotherms are studied to assay the structural effects of ethylene oxide (EO) and propylene oxide (PO) moieties on the molecular area and the interfacial tension behavior of molecules at the interface. Several industrial alcohols and isomerically pure alcohols, which have a general stucture of C4H9O(EO)m(PO)nH, are examined for their cosurfactant properties. They are high molecular weight alcohols and more surface active than the cosurfactants usually used. Results show that the number and the sequence of EO and PO units significantly affect the molecular areas and the interfacial tension (IFT) behavior of these molecules at the water/oil interface. The following conclusions are drawn from the result: 1) PO is more efficient in lowering the IFT and less effective in adsorption than EO. 2) For molecules having the same molecular weight but different structures, smaller molecules are more efficient in lowering the IFT. 3) When more EO, PO, or both units are added to the same hydrophobe, the molecule become bigger and more efficient in lowering the IFT.

  • PDF

Estimation of Pump Induced Vibration Force by Frequency Response Function (진동수응답함수 측정에 따른 펌프 가진력 산정)

    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.103-112
    • /
    • 1999
  • This is study to estimate the pump induced vibration in time and frequency domain by frequency response function between two points in case of 20Hp and 50Hp centrifugal pumps. The frequency response function has real and imaginary information of signals, and response function has also real and imaginary information. So the vibration force can be obtained from the response function and frequency response function by complex calculation. And it is compared with the theoretically estimated values and it is suggested that the amplitude of vibration with main frequency is about 10~25% of pump and motor weight, and the magnitude of unbalanced mass is about 30~60% of pump and motor weight to estimated vibration force in time domain. There are the other kinds of vibration components with different frequency values of 2~3 times of its main frequency, and these kinds of information are used to control the tuning ratio between operating frequency of pump and structural frequency of concrete slab.

  • PDF

The prediction for drying shrinkage of self-consolidating concrete using lightweight aggregate (경량골재를 사용한 자기충전 콘크리트의 건조수축률 예측)

  • Kim, Yong-Jic;Choi, Yun-Wang;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.341-344
    • /
    • 2008
  • Lightweight concrete is known for its advantage of reducing the self-weight of the structures, reducing the areas of sectional members as well as making the construction convenient. Thus the construction cost can be saved when applied to structures such as long-span bridge and high rise building. However, the lightweight concrete requires specific mix design method that is quite different from the typical concrete, since using the typical mix method would give rise the material segregation as well as lower the strength by the reduced weight of the aggregate. In order to avoid such problems, it is recommended to apply the mix design method of self-consolidating concrete for the lightweight concrete. Therefore experimental tests were performed as such mechanical properties(compressive strength, dry density and structural efficiency) of concrete and dry shrinkage according to ACI committee 209.

  • PDF

Analysis of rutile single crystals grown by skull melting method (Skull melting법에 의해 성장된 rutile 단결정 분석)

  • Seok, Jeong-Won;Choi, Jong-Koen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.5
    • /
    • pp.181-188
    • /
    • 2006
  • Rutile single crystals grown by skull melting method were cut parallel and perpendicular to growth axis, and both sides of the cut wafers (${\phi}5.5mmx1.0mm$) were then polished to be mirror surfaces. The black wafers were changed into pale yellow color by annealing in air at 1200 and $1300^{\circ}C$ for $3{\sim}15\;and\;10{\sim}50$ hours, respectively. After annealing, structural and optical properties were examined by specific gravity (S.G), SEM-electron backscattered pattern (SEM-EBSP), X-ray diffraction (XRD), FT-IR transmittance spectra, laser Raman spectroscopy (LRS), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS). These results are analyzed increase of weight in air, decrease of weight in water and specific gravity, shown secondary phase of needle shape, diffusion of oxygen ion and increase of $Ti^{3+}$. From the above results, we suggest that the skull melting method grown rutile single crystals contain defect centers such as $O_v,\;Ti^{3+},\;O_v-Ti^{3+}$ interstitials and $F^+-H^+$.

Structural and Corrosive Properties of ZrO2 Thin Films using N2O as a Reactive Gas by RF Reactive Magnetron Sputtering (N2O 반응 가스를 주입한 RF Reactive Magnetron Sputtering에 의한 ZrO2 박막의 구조 및 부식특성 연구)

  • Jee, Seung-Hyun;Lee, Seok-Hee;Baek, Jong-Hyuk;Kim, Jun-Hwan;Yoon, Young-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.69-73
    • /
    • 2011
  • A $ZrO_2$ thin film as a corrosion protective layer was deposited on Zircaloy-4 (Z-4) clad material using $N_2O$ as a reactive gas by RF reactive magnetron sputtering at room temperature. The Z-4 substrate was located in plasma or out of plasma during the $ZrO_2$ deposition process to investigate mechanical and corrosive properties for the plasma immersion. Tetragonal and monoclinic phases were existed in $ZrO_2$ thin film immersed in plasma. We observed that a grain size of the $ZrO_2$ thin film immersed in plasma state is larger than that of the $ZrO_2$ thin film out of plasma state. In addition, the corrosive property of the $ZrO_2$ thin films in the plasma was characterized using the weight gains of Z-4 after the corrosion test. Compared with the $ZrO_2$ thin film immersed out of plasma, the weight gains of $ZrO_2$ thin film immersed in plasma were larger. These results indicate that the $ZrO_2$ film with the tetragonal phase in the $ZrO_2$ can protect the Z-4 from corrosive phenomena.

Construction of Vehicle Door Impact Beam Using Hot Stamping Technology (핫스탬핑에 의한 자동차 도어 임팩트빔의 개발)

  • Lee, Hyun-Woo;Hwang, Jung-Bok;Kim, Sun-Ung;Kim, Won-Hyuck;Yoo, Seung-Jo;Lim, Hyun-Woo;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.797-803
    • /
    • 2010
  • A vehicle door impact beam made of a thin sheet of steel has been constructed using hot stamping technology with the aim of ensuring occupant safety in the event of a side collision. This technology has been used to increase the strength of the vehicle body parts and to reduce the weight of the door impact beam as well as the number of work processes. Mechanical tests were performed to determine the material properties of the hot-stamped specimen and the results of the tests were used as input data in stamping and structural simulation in order to obtain the optimal design of door impact beam. The strength of the hot-stamped door impact beam increased to a value that was 102% higher than that of conventional pipe-shaped door impact beam. A weight reduction of 34% was also achieved.