• Title/Summary/Keyword: Structural Weight

Search Result 2,485, Processing Time 0.028 seconds

A Study on the Buckling and Ultimate Strength for Cylindrically curved plate subject to combined load (조합하중을 받는 원통형 곡판구조의 좌굴 및 최종강도 거동에 관한 연구)

  • Oh, Young-Cheol;Ko, Jae-Yong;Lee, Kyoung-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.25-26
    • /
    • 2007
  • Ship are typically thin-walled structures and consists of stiffened plate structure by purpose of required design load and weight reduction etc. Also, a hull structural characteristics are often used in structures with curvature at deck plating with camber, side shell plating at fore and aft parts and bilge circle parts, It have been believed that these structures can be modelled fundamentally by a part of cylinder. Structural component with curvature subjected to combined loading regimes and complex boundary conditions, which can potentially collapse due to buckling. Hence, for more rational and safe design of ship structures, it is crucial importance to better understand the interaction relationship of the buckling and ultimate strength for cylindrically curved plate under these load components. In this study, the ultimate strength characteristic of curved plate under combined load(lateral pressure load + axial compressive load) are investigated through using FEM series analysis with varying geometric panel properties.

  • PDF

Design Improvement for a Planetary Gear System in Hydraulic Drive System (굴삭기 유압 주행시스템의 복합유성기어 시스템 설계개선 연구)

  • Shin, Yoo In;Yoon, Chan Heon;Han, Sung Gil;Park, Seong Gyu;Song, Chul Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.851-856
    • /
    • 2016
  • Planetary gear systems have several advantages over traditional gearboxes with parallel axis gear shafts. The planetary gearbox arrangement also creates greater stability due to the even distribution of mass and increased rotational stiffness. However, gears in planetary gear systems occasionally have a short-life due to wear and breakage by repetitive load during operation time. In this study, we evaluated variables of the strength design for each part and conducted structural analysis of seven cases of the planetary gear system. The result of structural analysis was applied to shape optimization method and obtaining the weight lightening designed value. Subsequently, the planetary gear system was performed to ensure the durability of gears during operation time with miner's rule.

Airframe Structure Development of Solar-powered HALE UAV EAV-3 (고고도 장기체공 태양광 무인기 EAV-3 기체구조 개발)

  • Shin, Jeong Woo;Park, Sang Wook;Lee, Sang Wook;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.3
    • /
    • pp.35-43
    • /
    • 2017
  • Research for solar-powered high altitude long endurance(HALE) UAV was conducted by Korea Aerospace Research Institute(KARI), and the EAV-3 with 19.5m wing span was developed. For HALE flight, aircraft should be lightly designed. Especially, airframe structure that accounts for a large portion of the total weight of aircraft should be lightweight. In this paper, development process of airframe structure for solar-powered HALE UAV, EAV-3, is described briefly. Domestic developed T-800 grade CFRP(Carbon Fiber Reinforced Plastic) composite material with high modulus and strength was used to design main load carrying structures. Flightloads analysis that takes into account large structural deformation was carried out. Stress and flutter analyses for airframe structure sizing were conducted. Static strength test for main wing and aircraft ground vibration test were conducted successfully and structural integrity was secured.

Evaluation of Boundary Conditions for Structural Analysis of Wheel Bearing Units (Wheel Bearing Unit의 구조해석을 위한 경계조건 설정에 관한 연구)

  • 김기훈;유영면;임종순;현준수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.230-237
    • /
    • 2000
  • The wheel bearing in vehicles has been improved to unit module by joining a bearing to a hub in order to achieve weight reduction and easy assembly. Currently, the contact force between a raceway and balls of a bearing is applied as the external force in order to analyse the structure of the unit type bearings. In this paper, simplified boundary conditions are discussed for structure analysis of wheel bearing unit. From the procedure, the contact conditions of balls and race in wheel bearing unit are considered as equivalent non-linear spring elements. The end node of a spring element is constrained in displacement. And the external force of boundary conditions is applied at the contact point between tire and road. For the evaluation of this analysis, its results for the force of spring elements are compared with contact forces of calculated results. and also maximum equivalent stresses of analysis are compared with results of test at the flange of inner ring. The analysis results with proposed boundary conditions are more accurate than results from analysis which is generally used.

  • PDF

Front Aluminum Subframe of High Level Vacuum Die-casting (고진공 다이캐스팅 공법 적용한 알루미늄 서브프레임 개발)

  • Cho, Young-Gun;Lim, Tae-Seong;Jang, Sang-Gil;Cho, Cheol-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.52-59
    • /
    • 2012
  • The subframe has been generally manufactured by using stamped steel material. Recently, automotive designers are considering aluminum as lightweight material. This paper describes the development process of an aluminum subframe which is made by high level vacuum die casting process, which is beneficial for minimizing gas contents and material properties. The weight of manufactured subframe is reduced by 4kg with the comparison of steel subframe. The aluminum subframe is packaged for the current vehicle layout and the imposed requirement is to attain a better structural performance that is evaluated in terms of mounting stiffness, noise and vibration, and endurance performance. The NVH evaluation results show that sound level is decreased by 8dB with the help of high roll-rod mounting stiffness as well as high structural modes.

Development of Automotive Structural Part Considering the Formability of Sandwich Panel (샌드위치 판재의 성형성을 고려한 차체 부품의 개발)

  • Choi, Won-Ho;Choi, Bo-Sung;Lee, Dug-Young;Hwang, Woo-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.33-38
    • /
    • 2012
  • Sandwich composite panel with high strength steel face can reduce the weight of the automotive structural parts. Unlike the parts in aerospace application, the automotive parts are made by the forming process for mass production. The CAE simulation can predict the failures caused by forces and deformation during the forming process. Since the material properties are very important factor for the simulation, we performed the tensile test to get the material properties. The inspections by the optical microscope at each strain level show the states of the polymer resin. The material properties measured by the tensile tests are used for the input data of simulation. The simulation predicts the forming process of the bumper back beam very exactly compared with the try out results.

Repair of precracked RC rectangular shear beams using CFRP strip technique

  • Jayaprakash, J.;Samad, Abdul Aziz Abdul;Abbasovich, Ashrabov Anvar;Ali, Abang Abdullah Abang
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.427-439
    • /
    • 2007
  • The exploitation of fibre reinforced polymer composites, as external reinforcement is an evergreen and well-known technique for improving the structural performance of reinforced concrete structures. The demand to use FRP composites in the civil engineering industry is mainly due to its high strength, light weight, and stiffness. This paper exemplifies the shear strength of partially precracked reinforced concrete rectangular beams repaired with externally bonded Bi-Directional Carbon Fibre Reinforced Polymer (CFRP) Fabrics strips. All specimens were cast in the laboratory environment without any internal shear reinforcement. The test parameters were longitudinal tensile reinforcement, shear span to effective depth ratio, spacing of CFRP strips, and orientation of CFRP reinforcement. It mainly focuses on the shear capacity and modes of failure of the CFRP strengthened shear beams. Results have shown that the CFRP repaired beams attained a shear enhancement of 32% and 107.64% greater than the control beams. This study underscores that the CFRP strip technique significantly enhanced the shear capacity of precracked reinforced concrete rectangular beams without any internal shear reinforcement.

A Study on the Buckling Characteristics of Steel Pipe Scaffold (강관비계의 좌굴특성에 관한 연구)

  • Paik, Shin-Won;Song, In-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.57-61
    • /
    • 2010
  • Formwork is a temporary structure that supports its weight and that of fresh concrete as well as construction live loads. Scaffoling is a temporary frame used to support people and material in the construction or repair of buildings and other large structures. It is usually a modular system of metal pipes, although it can be made out of other materials. Bamboo is still used in some Asian countries like China. The purpose of a working scaffold is to provide a safe place of work with safe access suitable for the work being done. In construction site, steel pipes are usually used as scaffolds. In this study, scaffolding systems which is changed according to sleeper and joist space were measured by buckling test. Buckling load of respective scaffolding system was analyzed by structural analysis program(MIDAS). Buckling load of scaffold with/without wall connection and footboard was got by test and structural analysis. According to these results,we know that scaffolding system of case 3 is suitable. Buckling load of scaffold with wall connection is higher than without wall connection. So wall connection is important in scaffoling systems. Footboard in the scaffolding systems is not effective against promotion of buckling load. Finally, the present study results will be used to design scaffolding systems safely in the construction sites.

A Study on the Plane Stress Problem of Composite Laminated Annular Elements Using Finite Difference Method (유한차분법을 이용한 복합적층 원형곡선요소의 평면응력문제 연구)

  • Lee, Sang Youl;Yhim, Sung Soon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.65-79
    • /
    • 1997
  • Composite materials are consist of two or more different materials to produce desirable properties for structural strength. Because of their superiority in strength, corrosion resistance, and weight reduction, they are used extensively as structural members. The objective of this study is to present the effectivness of the laminated composite elements by analyzing in-plane displacement and stress of the anisotropic laminated annular elements. Anisotropic laminated structures are very difficult to analyze and apply, compared with isotropic and orthotropic cases for arbitrary boundaries and fiber angle -ply. Boundary conditions for the examples used in this study consist of two opposite edges clamped and the other two edges free, and finite difference method is used in this study for numerical analysis. From the numerical result, it is found that the program used in this study can be used to obtain the displacement of the straight beams considering it's transverse shear deformation as well as anisotropic laminated elements. Several numerical examples show the advantages of the stiffness increase when the angle-ply composite materials are used. Therefore it gives a guide in deciding how to make use of fiber's angle for the subtended angle, load cases, and boundary conditions.

  • PDF

Equivalent Vehicle Load Factors for Girder and Beam of Parking Garage Structure (주차장 구조물의 보와 거더의 등가차량 하중계수에 관한 연구)

  • 곽효경;송종영
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.203-216
    • /
    • 1997
  • The Equivalent vehicle load factors of Beams and Girders on parking garage structure are proposed in this study. Without taking the sophisticated numerical analysis for the concentrated wheel loads, the design member forces of beam and girder can be easily calculated only with those for the distributed load by using the constructed relationships between the equivalent vehicle load factor and the length of member. Besides, the standard vehicle with total weight of 2.4ton is designed based on the review of many foreign design codes for parking garage and the investigation of small to medium vehicles made in Korea. Finally the efficiency and the reliability of the proposed equivalent vehicle load factors are demonstrated through the application of the typical beam and girder.

  • PDF