• Title/Summary/Keyword: Structural Transition

Search Result 728, Processing Time 0.026 seconds

UML-Based Industry-Strength Object-Oriented Methodology (UML을 기반으로 한 실무 중심의 객체지향 방법론)

  • Jo, Eun-Suk;Kim, Su-Dong;Ryu, Seong-Yeol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.3
    • /
    • pp.622-632
    • /
    • 1999
  • As the complexity of software development is increasing due to networking, multimedia, and diverse system architecture, the need for effective software development methodology is increasing. Especially, due to software standard and internalization of software market, it is necessary to accept international quality such as ISO 9000-3. In addition, object oriented development methodology is required due to rapid propagation of OO technology and standardization. Recently, UML was accepted by the OMG as standard object-oriented modeling language for distributed environment. When we UML was accepted by the OMG as standard object-oriented modeling language for distributed environment. When we develop Java and CORBA-based software, often UML is applied to Java and CORBA-based projects. However, current structural or OMT-based object-oriented methodologies. In this paper, we proposed UML-based development and concrete guidelines for each phase in order to apply UML to software development practically and effectively. Also, we define the transition guidelines and semantics between various development tasks. In addition, the analysis and design techniques of user interface and system development techniques needed in Web application development are presented.

  • PDF

Study on the chemical environment for conformational change of i-motif DNA by atomic force microscopy cantilever (AFM 캔틸레버를 이용한 i-motif DNA의 구조 변화에 미치는 화학적 환경에 대한 연구)

  • Jung, Hwi-Hun;Park, Jin-Sung;Yang, Jae-Moon;Lee, Sang-Woo;Eom, Kil-Ho;Kwon, Tae-Yun;Yoon, Dae-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.214-220
    • /
    • 2010
  • Three-dimensional(3D) structure of specific DNA can be changed between two conformations under an external environmental transition such as pH and salt concentration variations. We have experimentally observed the conformational transitions of i-motif DNA using AFM cantilever bioassay. It is shown that pH change of a solvent induces the bending defleciton change of a cantilever functionalized by i-motif DNA. This indicates that cantilever bioassay enables the label-free detection of DNA structural changes upon pH change. It is implied that cantilever bioassay can be a de novo route to quantitatively understand the conformational transitions of biological molecules under environmental changes.

A study on the weld-strength in two-shot molding (이중 사출시 발행하는 Weld-line의 강도 연구)

  • Jang, Min-Kyu;Kim, Chang-jin;Choi, Hea-Suck;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.30-33
    • /
    • 2015
  • In injection molding, many kinds of defects have occurred because of a characteristic of plastics injection molding. Weld line is one of the defects is formed when separated melt fronts recombine together during the mold filling stage. That is one of problems in injection molding. Weld lines in the appearance of plastics parts can deteriorate visible quality. And most importantly, the local mechanical strength in the weld line area can be significantly weaker. It could be one of the most problems for structural applications. In this study, the mold available two-shot-molding of same polymers have been designed, and a series of experiment about tensile strength in weld line area has been conducted using Taguchi's design of experiment to optimize injection molding conditions decreasing of weld strength and find out a factors affected weld strength in two-shot- molding.

  • PDF

Theoretical Studies on the Competitive Sn2 Reactions of O-Imidomethyl Derivatives of Phenols with OH-

  • Kim, Chang Gon;Jeong, Dong Su;Kim, Chan Gyeong;Lee, Bon Su;Jeong, Yeong Jin;Lee, Byeong Jun;Lee, Ik Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.25-29
    • /
    • 2001
  • Nucleophilic substitution reactions of O-imidomethyl derivatives of phenols with OH- were studied theoretically using the semiempirical AM1 and Solvation Model 2.1 (SM2.1) methods in the gas phase and aqueous solution, respectively. In the gas phase, the two reaction paths, in which the imide (1a) or phenol (1b) is functioning as a leaving group, can occur competitively. In contrast, in aqueous solution, path (1b) becomes more favorable than (1a) because the transition states (TS) of path (1b) are more stabilized by solvent. Differences in solvation energies are caused by the structural differences of TS, i.e., the TS via path (1b) is more dissociative than that via path (1a). Therefore we conclude that the solvent effects play an important role in the hydrolysis of O-imidomethyl derivatives of phenols. However, reactivity is dependent on the acidities of both the imide and the phenol fragments since the ρz values vary progressively from 4.2 (Z' = I) to 2.5 (Z' = IV) as the acidities of imide increase. These are in good agreement with the experimental results.

A Theory on Phase Behaviors of Diblock Copolymer/Homopolymer Blends

  • 윤경섭;박형석
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.873-885
    • /
    • 1995
  • The local structural and thermodynamical properties of blends A-B/H of a diblock copolymer A-B and a homopolymer H are studied using the polymer reference interaction site model (RISM) integral equation theory with the mean-spherical approximation closure. The random phase approximation (RPA)-like static scattering function is derived and the interaction parameter is obtained to investigate the phase transition behaviors in A-B/H blends effectively. The dependences of the microscopic interaction parameter and the macrophase-microphase separation on temperature, molecular weight, block composition and segment size ratio of the diblock copolymer, density, and concentration of the added homopolymer, are investigated numerically within the framework of Gaussian chain statistics. The numerical calculations of site-site interchain pair correlation functions are performed to see the local structures for the model blends. The calculated phase diagrams for A-B/H blends from the polymer RISM theory are compared with results by the RPA model and transmission electron microscopy (TEM). Our extended formal version shows the different feature from RPA in the microscopic phase separation behavior, but shows the consistency with TEM qualitatively. Scaling relationships of scattering peak, interaction parameter, and temperature at the microphase separation are obtained for the molecular weight of diblock copolymer. They are compared with the recent data by small-angle neutron scattering measurements.

Structural and Magnetic Properties of the Brownmillerite $Ca_2Al_xFe_{2-x}O_5$ System

  • 김귀야;로권선;여철현
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.10
    • /
    • pp.934-938
    • /
    • 1995
  • A series of solid solutions in the Ca2AlxFe2-xO5 (x=0.00, 0.50, 0.66, 1.00 and 1.34) system with brownmillerite structure has been synthesized at 1100 ℃ under an atmospheric air pressure. The solid solutions are analysed by powder x-ray diffraction analysis, Mohr salt titration, thermal analysis, and Mossbauer spectroscopic analysis. The x-ray diffraction analysis assigns the compositions of x=0.00 and 0.50 to the space group Pcmn and those of x=0.66, 1.00, and 1.34 to the Ibm2. Mo&ssbauer spectra have shown the coordination state and disordering of Al3+ and Fe3+ ions. The substituting preference of Al3+ ions for the tetrahedral site decreases with increasing x value. Magnetic susceptibility of the system has been measured in the temperature range of 5 K to 900 K. The solid solutions of the compositions of x=0.00, 0.50 and 0.66 have shown a thermal hysteresis and the thermoremanent magnetization gap decreases with increasing x value in the above systems. However the compositions of x=1.00 and 1.34 do not show the hysteresis. The exchange integral is calculated from Fe3+ ion occupancy ratio. The integral decreases with x value and thus the magnetic transition temperature decreases with the increasing x value.

Substitutional Effects of Na in the YB$a_2Cu_3O_{7-y}$ Oxide Superconductors

  • Hur Nam Hwi;Ha, Dong Han;Park Yong Ki;Park, Jong Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.425-428
    • /
    • 1992
  • Sodium substituted samples of $Y_{1-x}Na_xBa_2Cu_3O_{7-y}$ for $0.00{\leq}x{\leq}0.16$ were prepared and characterized by X-ray powder pattern, electrical resistivity and magnetic susceptibility measurements, Raman spectroscopy, and idometric titration. The Na substituted compounds have narrow solid solution limits where $0.00{\leq}x{\leq}0.16.$ As the Na concentration increases, the parent orthorhombic structure tends to gradually change to tetragonal. Small changes in the superconducting transition temperature, Tc, are observed in this solid solution region. Raman spectra for the Na phases are virtually identical with that of $YBa_2Cu_3O_7$ except that the Cu(1)-O(4) stretching mode at 504 $cm^{-1}$ and the Cu(2)-O(2,3) bending mode at 340 $cm^{-1}$ for x = 0.16 are slightly shifted. The hole concentrations of the sodium substituted compounds ranged from 0.31 to 0.33 per Cu site are increased with Na content. The substitution of $Na^+$ for $Y^{3+}$ site appears to create oxygen vacancies in the Cu-O chains, causes structural change from orthorhombic to tetragonal, and increases hole concentration in the substituted system.

The elastic deflection and ultimate bearing capacity of cracked eccentric thin-walled columns

  • Zhou, L.;Huang, Y.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.401-411
    • /
    • 2005
  • The influence of cracks on the elastic deflection and ultimate bearing capacity of eccentric thin-walled columns with both ends pinned was studied in this paper. First, a method was developed and applied to determine the elastic deflection of the eccentric thin-walled columns containing some model-I cracks. A trigonometric series solution of the elastic deflection equation was obtained by the Rayleigh-Ritz energy method. Compared with the solution presented in Okamura (1981), this solution meets the needs of compatibility of deformation and is useful for thin-walled columns. Second, a two-criteria approach to determine the stability factor ${\varphi}$ has been suggested and its analytical formula has been derived. Finally, as an example, box columns with a center through-wall crack were analyzed and calculated. The effects of cracks on both the maximum deflection and the stability coefficient ${\varphi}$ for various crack lengths or eccentricities were illustrated and discussed. The analytical and numerical results of tests on the columns show that the deflection increment caused by the cracks increases with increased crack length or eccentricity, and the critical transition crack length from yielding failure to fracture failure ${\xi}_c$ is found to decrease with an increase of the slenderness ratio or eccentricity.

Investigation of bond-slip modeling methods used in FE analysis of RC members

  • Demir, Serhat;Husem, Metin
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.275-291
    • /
    • 2015
  • Adherence between reinforcement and the surrounding concrete is usually ignored in finite element analysis (FEA) of reinforced concrete (RC) members. However, load transition between the reinforcement and surrounding concrete effects RC members' behavior a great deal. In this study, the effects of bond-slip on the FEA of RC members are examined. In the analyses, three types of bond-slip modeling methods (perfect bond, contact elements and spring elements) and three types of reinforcement modeling methods (smeared, one dimensional line and three dimensional solid elements) were used. Bond-slip behavior between the reinforcement and surrounding concrete was simulated with cohesive zone materials (CZM) for the first time. The bond-slip relationship was identified experimentally using a beam bending test as suggested by RILEM. The results obtained from FEA were compared with the results of four RC beams that were tested experimentally. Results showed that, in FE analyses, because of the perfect bond occurrence between the reinforcement and surrounding concrete, unrealistic strains occurred in the longitudinal reinforcement. This situation greatly affected the load deflection relationship because the longitudinal reinforcements dominated the failure mode. In addition to the spring elements, the combination of a bonded contact option with CZM also gave closer results to the experimental models. However, modeling of the bond-slip relationship with a contact element was quite difficult and time consuming. Therefore bond-slip modeling is more suitable with spring elements.

Renewable energy statecraft and asymmetric interdependence: how the solar energy industry is wielding China with geopolitical power

  • Vasconcelos, Daniel de Oliveira
    • Journal of Contemporary Eastern Asia
    • /
    • v.20 no.2
    • /
    • pp.259-277
    • /
    • 2021
  • This article investigates the geopolitics of the energy transition era, concentrating on China's solar photovoltaic (PV) industry. Authors have noted that the rise of renewables is changing the geopolitical landscape of world energy systems, but these new energy sources carry their own technical characteristics and geopolitical implications. Bearing this in mind, this research answers the questions: What are the structural factors that facilitate China's use of renewable energy to achieve political goals, and what are their implications? In order to analyze the data, I devise an analytical framework based on the energy statecraft literature and contrast rival explanations, particularly the "prosumer theory" and the premise of less geopolitical interdependence in a renewable-centered world. I show that asymmetric interdependence in the solar PV sector is already a reality. China's solar PV industry is a case that suffices all conditions (centrality in industrial capacity, market share, and companies' compliance, but to a lesser extent in critical materials and technological endowments) in the solar PV sector to devise effective strategies aimed at reaping benefits out of its asymmetric interdependence with the rest of the world.