• Title/Summary/Keyword: Structural Transition

Search Result 728, Processing Time 0.028 seconds

A Structural Analysis of the Formal Communication of Korean Chemists by Using Markov Chains (마코브체인을 이용(利用)한 한국(韓國) 화학자(化學者)의 공식(公式)커뮤니케이션의 구조적(構造的) 분석(分析))

  • Kim, Hyun-Hee
    • Journal of Information Management
    • /
    • v.20 no.1
    • /
    • pp.66-85
    • /
    • 1989
  • The purpose of this study is to verify the following two hypotheses by using a test collection of 3.815 documents on the subject of chemistry. First hypothesis is that a Markov chain model can be used t9 describe and predict authors' movements among subareas of a discipline. Second hypothesis is that a transition matrix of the Markov chain can be applied to describ the intellectual structure of a discipline en the multidimensional space. The results of this study have shown that the Markov chain is a good model to be used to study the movement of korean chemists in 7 subtopics in chemistry and understand the intellectual structure of chemistry.

  • PDF

Basic Design and Structural and Optical Glass Characteristic Study of Chalcogenide Aspheric Lens (칼코게나이드계 비구면 성형렌즈의 기초설계 및 구조적, 광학적 글래스 특성 연구)

  • Ko, Jun-Bin;Kim, Jeong-Ho;Byun, Dong-Hae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.69-74
    • /
    • 2010
  • An increasing interest towards the investigations of chalcogenide glasses has been observed in the past years. This interest is due to their specific properties, as well as to the possibilities for their application in different fields of science. The optical devices, working on the basis of photoinduced phase transition between amorphous and crystalline state in the chalcogenide glasses, are a perspective for the micro- and nano-electronics. Here we were analysis basic physical properties for Ge-As-Se and As-Se chalcogenide glasses samples for characteristic for a planning of chalcogenide aspheric lens. From differential DTA/TG results, activation energies of the crystallizations of $Ge_{10}As_{40}Se_{50}$ and $As_{40}Se_{60}$ were approximately 3.6 eV and 3.3 eV, respectively.

Effects of the post-annealing temperature on the properties of $MgB_2$ thin films ­ (가열냉각 온도에 따른 $MgB_2$ 박막의 특성변화)

  • Hyeong-Jin Kim;W. N. Kang;Eun-Mi Choi;Sung-Ik Lee
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.45-48
    • /
    • 2001
  • We have fabricated $MgB_2$thin films on (1 1 02)$ A1_2$$O_3$substrates by using a two-step method. Amorphous B thin films were deposited by a pulsed laser deposition technique and sintered in Mg vapor at various temperatures from 800 to $950^{\circ}C$. Superconducting properties of the thin films were investigated by temperature dependences of magnetization and critical current density. Structural studies were carried out by an x-ray diffraction and a scanning electron microscope. The films fabricated at $900^{\circ}C$ showed the highest transition temperature of 39 K and critical current density of ~$10^{7}$ A/$\textrm{cm}^2$ at 15 K.

  • PDF

Evaluation of Glass-forming Ability in Ca-based Bulk Metallic Glass Systems (칼슘기 벌크 비정질 합금에서 비정질 형성능 평가)

  • Park, Eun-Soo;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.29 no.4
    • /
    • pp.181-186
    • /
    • 2009
  • The interrelationship between new parameter ${\sigma}$ and maximum diameter $D_{max}$ is elaborated and discussed in comparison with four other glass forming ability (GFA) parameters, i.e. (1) super-cooled liquid region ${\Delta}T_x (=T_x - T_g)$, (2) reduced glass transition temperature $T_{rg} (=T_g/T_l)$, (3) K parameter $K (=[T_x-T_g]/[T_l -T_x])$, and (4) gamma parameter ${\gamma}(=[T_x]/[T_l+T_g])$ in Ca-based bulk metallic glass (BMG) systems. The ${\sigma}$ parameter, defined as ${\Delta}T^*{\times}P^'$, has a far better correlation with $D_{max}$ than the GFA parameters suggested so far, clearly indicating that the liquid phase stability and atomic size mismatch dominantly affect the GFA of Ca-based BMGs. Thus, it can be understood that the GFA of BMGs can be properly described by considering structural aspects for glass formation as well as thermodynamic and kinetic aspects for glass formation.

A Study on the y+ Effects on Turbulence Model of Unstructured Grid for CFD Analysis of Wind Turbine (풍력터빈 전산유체역학해석에서 비균일 그리드 무차원 연직거리의 난류모델에 대한 영향특성)

  • Lee, Kyoung-Soo;Ziaul, Huque;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • This paper presents the dimensionless wall distance, y+ effect on SST turbulent model for wind turbine blade. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine was used for the study, which the wind tunnel and structural test data has publicly available. The near wall treatment and turbulent characteristics have important role for proper CFD simulation. Most of the CFD development in this area is focused on advanced turbulence model closures including second moment closure models, and so called Low-Reynolds (low-Re) number and two-layer turbulence models. However, in many cases CFD aerodynamic predictions based on these standard models still show a large degree of uncertainty, which can be attributed to the use of the $\epsilon$-equation as the turbulence scale equation and the associated limitations of the near wall treatment. The present paper demonstrates the y+ definition effect on SST (Shear Stress Transport) turbulent model with advanced automatic near wall treatment model and Gamma theta transitional model for transition from lamina to turbulent flow using commercial ANSYS-CFX. In all cases the SST model shows to be superior, as it gives more accurate predictions and is less sensitive to grid variations.

Preparation of Fe-ACF/TiO2 Composites and their Photocatalytic Degradation of Waste Water

  • Oh, Won-Chun;Bae, Jang-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.667-674
    • /
    • 2008
  • In this study, we prepared Fe-activated carbon fiber(ACF)/$TiO_2$ composites with titanium (VI) n-butoxide (TNB) as the titanium source for ACF pre-treated with iron compounds through the impregnation method. In terms of textural surface properties, the composites demonstrate a slight decrease in the BET surface area of the samples and an increase in the amount of iron compounds treated. The surface morphology of the Fe-ACF/$TiO_2$ composites was characterized by means of SEM. The composites have a porous texture with homogenous compositions of Fe and titanium dioxide distributed on the sample surfaces. The phase formation and structural transition of the iron compounds and titanium dioxide were observed in X-ray diffraction patterns of the Fe-ACF/$TiO_2$ composites. The chemical composition of the Fe-ACF/$TiO_2$ composites, which was investigated with EDX shows strong peaks for the C, O, Fe and Ti elements. The photo degradation results confirm that the Fe-ACF/$TiO_2$ composites show excellent removal activity for the COD in piggery waste due to photocatalysis of the supported $TiO_2$, radical reaction by Fe species, and the adsorptivity and absorptivity of ACF.

Mesoscale modelling of concrete for static and dynamic response analysis -Part 1: model development and implementation

  • Tu, Zhenguo;Lu, Yong
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.197-213
    • /
    • 2011
  • Concrete is a heterogeneous material exhibiting quasi-brittle behaviour. While homogenization of concrete is commonly accepted in general engineering applications, a detailed description of the material heterogeneity using a mesoscale model becomes desirable and even necessary for problems where drastic spatial and time variation of the stress and strain is involved, for example in the analysis of local damages under impact, shock or blast load. A mesoscale model can also assist in an investigation into the underlying mechanisms affecting the bulk material behaviour under various stress conditions. Extending from existing mesoscale model studies, where use is often made of specialized codes with limited capability in the material description and numerical solutions, this paper presents a mesoscale computational model developed under a general-purpose finite element environment. The aim is to facilitate the utilization of sophisticated material descriptions (e.g., pressure and rate dependency) and advanced numerical solvers to suit a broad range of applications, including high impulsive dynamic analysis. The whole procedure encompasses a module for the generation of concrete mesoscale structure; a process for the generation of the FE mesh, considering two alternative schemes for the interface transition zone (ITZ); and the nonlinear analysis of the mesoscale FE model with an explicit time integration approach. The development of the model and various associated computational considerations are discussed in this paper (Part 1). Further numerical studies using the mesoscale model for both quasi-static and dynamic loadings will be presented in the companion paper (Part 2).

Research Trend of Metal-Organic Frameworks for Magnetic Refrigeration Materials Application (자기 냉동 재료 응용을 위한 MOF의 연구 동향)

  • Kim, Suhwan;Son, Kwanghyo;Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.136-141
    • /
    • 2020
  • The magnetocaloric effect (MCE), which is the reversible temperature change of magnetic materials due to an applied magnetic field, occurs largely in the vicinity of the magnetic phase transition temperature. This phenomenon can be used to induce magnetic refrigeration, a viable, energy-efficient solid-state cooling technology. Recently, Metal-organic frameworks (MOFs), due to their structural diversity of tunable crystalline pore structure and chemical functionality, have been studied as good candidates for magnetic refrigeration materials in the cryogenic region. In cryogenic cooling applications, MCE using MOF can have great potential, and is even considered comparable to conventional lanthanum alloys and magnetic nanoparticles. Owing to the presence of large internal pores, however, MOF also exhibits the drawback of low magnetic density. To overcome this problem, therefore, recent reports in literature that achieve high magnetic entropy change using a dense structure formation and ligand tuning are introduced.

ETIR and Raman Spectroscopic Studies of Crystallization and Polymorphism of Syndiotactic Polystyrene (FTIR과 라만 분광 실험을 이용한 신디오탁틱 폴리스티렌의 구조 및 결정화 연구)

  • ;;;;;Kohji Tashiro
    • Polymer(Korea)
    • /
    • v.27 no.6
    • /
    • pp.603-608
    • /
    • 2003
  • Syndiotactic polystyrene (s-PS) presents a very complex polymorphic behavior depending on the sample preparation history and exhibits a solid-solid phase transition. Each different polymorphic structures of the s-PS sample were prepared by annealing the samples from room temperature to 220 $^{\circ}C$. The structural changes induced by annealing were investigated using FTIR and FT-Raman spectroscopy. Although the crystallization kinetics of s-PS are difficult to investigate with DSC due to its fast crystallization rate, it was possible to determine crystallinity changes in the s-PS sample using infrared characteristic peaks with Beer-Lambert's law.

Leverage Strategy to National R&D Investment in Korea: A System Dynamics Approach (국가 연구재발 투자시스템의 레버리지 전략: 시스템 다이내믹스 접근)

  • 박헌준;오세홍;김상준
    • Proceedings of the Korean System Dynamics Society
    • /
    • 2004.02a
    • /
    • pp.19-52
    • /
    • 2004
  • This study aims to grasp invisible yet dynamic systemic structure that influences the general procedure of national R&D investment system in Korea using "system dynamic methods and to suggest policy lever. Various conflicting situations, 'R&D investment paradoxes' in myopia investment and principal-agent problems etc, arise when the government decides R&D investment area and makes indispensable choice. Difficulty in the decision can be amplified due to misalignments among decision on adequate amount of R&D investment ("strategic loop"), R&D system ("structural loop") and acceptance and realization by R&D laboratories and theirs researcher ("efficacy loop"). Results of modeling and simulation of korea national R&D investment system with consideration of three causal loops show the switching pattern dynamically, in which form of technologies shifts from one to another stage like paradigm shift, when the R&D investment reaches a certain stork. R&D investment increases are directly not liked to R&D productivities because of delays and side effects during transition periods between different stages of technology development. Thus, It is necessary to develope strategies in order to enhance efficiency of technological development process by perceiving the switching pattern.

  • PDF