• Title/Summary/Keyword: Structural Transition

Search Result 728, Processing Time 0.026 seconds

Decreased entropy of unfolding increases the temperature of maximum stability: Thermodynamic stability of a thioredoxin from the hyperthermophilic archaeon Methanococcus jannaschii

  • Lee, Duck-Yeon;Kim, Kyeong-Ae;Kim, Key-Sun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.8 no.1
    • /
    • pp.1-18
    • /
    • 2004
  • A thioredoxin from hyperthermophile, Methanococcus jannashii (MjTRX) was characterized by use of the differential scanning calorimetry to understand the mechanisms of thermodynamic stability. MjTRX has an unfolding transition temperature of 116.5$^{\circ}C$, although the maximum free energy of the unfolding (9.9 Kcal/mol) is similar to that of E. coli thioredoxin (ETRX, 9.0 Kcal/mol). However, the temperature of maximum stability is higher than ETRX by 20$^{\circ}C$, indicating that the unfolding transition temperature increased by shifting the temperature of maximum stability. MjTRX has lower enthalpy and entropy of the unfolding compared to ETRX maintaining a similar free energy of the unfolding. From the structure and the thermodynamic parameters of MjTRX, we showed that the unfolding transition temperature of MjTRX is increased due to the decreased entropy of the unfolding. Decreasing the unfolded state entropy and increasing the folded state entropy can decrease the entropy of the unfolding. In the case of MjTRX, the increased number of proline residues decreased the unfolded state entropy and the increased enthalpy in the folded state increased the folded state entropy.

  • PDF

Experimental study on modified low liquid limit silt for abutment backfill in bridge-embankment transition section

  • Shu-jian Wang;Yong Sun;Zhen-bao Li;Kai Xiao;Wei Cui
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.601-613
    • /
    • 2023
  • Low liquid limit silt, widely distributed in the middle and down reaches of Yellow River, has the disadvantages of poor grading, less clay content and poor colloidal activity. It is very easy to cause vehicle jumping at the bridge-embankment transition section when the low liquid limit silt used as the backfill at the abutment back. In this paper, a series of laboratory tests were carried out to study the physical and mechanical properties of the low liquid limit silt used as back filling. Ground granulated blast furnace slag (GGBFS) was excited by active MgO and hydrated lime to solidify silt as abutment backfill. The optimum ratio of firming agent and the compaction and mechanical properties of reinforced soil were revealed through compaction test and unconfined compressive strength (UCS) test. Scanning electron microscope (SEM) test was used to study the pore characteristics and hydration products of reinforced soil. 6% hydrated lime and alkali activated slag were used to solidify silt and fill the model of subgrade respectively. The pavement settlement regulation and soil internal stress-strain regulation of subgrade with different materials under uniformly distributed load were studied by model experiment. The effect of alkali activated slag curing agent on curing silt was verified. The research results can provide technical support for highway construction in silt area of the Yellow River alluvial plain.

Magnetic Properties of Carbon Chains Doped with 4d Transition Metals

  • Jang, Y.R.;Lee, J.I.
    • Journal of Magnetics
    • /
    • v.13 no.1
    • /
    • pp.7-10
    • /
    • 2008
  • The structural and magnetic properties of functionalized carbon chains doped with 4d transition metals, such as Ru, Rh, and Pd, were investigated using the full-potential linearized augmented plane wave (FLAPW) method. The carbon nanowire doped with Ru exhibited a ferromagnetic ground state with a sizable magnetic moment, while those doped with Rh and Pd had nonmagnetic ground states. For the Ru-doped chain, the density of states at the Fermi level showed large spin polarization, which suggests that the doped nanowire could be used for spintronic applications.

Theoretical Study of the Hydroalumination Reaction of Cyclopropane with Alane

  • Singh, Satya Prakash;Thankachan, Pompozhi Protasis
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.2
    • /
    • pp.216-220
    • /
    • 2013
  • The hydroalumination of cyclopropane has been investigated using the B3LYP density functional method employing several split-valence basis sets. It is shown that the reaction proceeds via an intermediate weakly bound complex and a four-centered transition state. Calculations at higher levels of theory were also performed at the geometries optimized at the B3LYP level, but only slight changes in the barriers were observed. Structural parameters for the transition state are also reported.

Construct Validity of the Life Transition Scale for Parents of Children with Autism (자폐성장애 아동 부모의 삶의 전환과정 측정도구에 대한 구성타당도 평가)

  • Lee, Ae Ran;Hong, Sun Woo;Ju, Se Jin
    • Journal of Korean Academy of Nursing
    • /
    • v.44 no.5
    • /
    • pp.563-572
    • /
    • 2014
  • Purpose: The study was done to identify the construct validity and reliability of the life transition scale (LTS) for parents who have children with autism. Methods: Exploratory factor analysis (EFA) and confirmative factor analysis (CFA) were conducted to identify the most adequate measurement model for structural validity. Convergent validity and discriminant validity were also conducted for structural validity. Data were collected from 208 parents through self-reported questionnaires and analyzed with SPSS/WIN 15.0 and AMOS 20.0 version. Results: A four factor-structure was validated (${\chi}^2$=541.23, p<.001, GFI=.82, RMSEA=.07, IFI=.89, CFI=.89, PNFI=.73, Q (${\chi}^2/df$)=2.20) at the 3rd order of EFA and CFA, and factors were named as denying, wandering, despairing, and accepting. Both convergent and determinant validity for LTS were 100%. Cronbach's alphas for the reliability of each structure were .77-.90 and .83 for total structure. Conclusion: The four structures, 24-item instrument showed satisfactory reliability and validity. LTS has the potential to be appropriate for assessing the transition process of life for parents who have children with autism and provides basic directions for differentiated support and care at each stage.

Molecular Dynamics Study on the Structural Phase Transition of Crystalline Silver Iodide

  • Jun Sik Lee;Mee Kyung Song;Mu Shik Jhon
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.490-494
    • /
    • 1991
  • The ${\beta} to {\alpha}$ phase transition in silver iodide is studied with the (N, V, E) and (N, P, T) molecular dynamics (MD) method. In experiments, the phase transition temperature is 420 K. Upon heating of ${\beta}$ form, the iodine ions undergo hcp to bcc transformation and silver ions become mobile. MD simulations for the ${\beta}$ and ${\alpha}$ phases are carried out at several temperatures and the radial distribution functions (rdf) are obtained at those temperatures in the (N, V, E) ensemble. But the phase transition is not found in our calculation. Next the phase transition is studied with the (N, P, T) MD and we find some evidences of phase transition. At 3 Kbars and 2 Kbars the phase transition temperatu re is about 300 K. For 3.55 Kbars, the phase transition is higher (420 K) than the low pressure case. The phase transition temperature is somewhat dependent on the pressure in our calculations.

Review of the Structural Shape for Aft Transition Ring of Submarine (잠수함 함미 트랜지션 링 구조 형상에 대한 고찰)

  • Oh, Dohan;Ahn, Namhyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.936-944
    • /
    • 2019
  • Submarines, which have been called an invisible force, are strategic underwater weapon systems that perform missions such as anti-surface warfare, anti-submarine warfare, and high payoff target strikes with the advantage of underwater covertness. A submarine should be able to withstand the hydrostatic pressure of the deep sea. In this respect, the submarine pressure hull, as the main structural system to resist the external pressure corresponding to the submerged depth, should ensure the survivability from hazards and threats such as leakage, fires, shock, explosion, etc. To do this, the initial scantling of the submarine pressure hull must be calculated appropriately in the concept design phase. The shape of the aft transition ring varies according to its connection with the submarine aft end conical structure, pressure hull cylindrical part, and non-pressure hull of the submarine; the design of the aft transition ring should not only take into account stress flow and connectivity but also the cost increase due to the increased man-hours of its complex geometry. Therefore, trade-off studies based on the four different shapes of the aft transition ring are carried out considering both the review of the structural strength through nonlinear finite element analysis (FEA) and economic feasibility by reviewing the estimations of the manufacturing working days and material costs. Finally, the most rational structural aft transition ring shape for a submarine amongst four reviewed types was proposed.

The Regulatory Domain of Troponin C: To Be Flexible or Not To Be Flexible

  • Gagne, Stephane M.;Sykes, Michael T.;Sykes, Brain D.
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.2 no.2
    • /
    • pp.131-140
    • /
    • 1998
  • The calcium-induced structural changes in the skeletal muscle regulatory protein troponin C (NTnC) involve a transition from a ‘closed’to an ‘open’structure with the concomitant exposure of a large hydrophobic interaction site for target proteins. Structural studies have served to define this conformational change and elucidate the mechanism of the linkage between calcium binding and the induced structural changes. There are now several structures of NTnC available from both NMR and X-ray crystallography. Comparison of the calcium bound structures reveals differences in the level of opening. We have considered the concept of a flexible open state of NTnC as a possible explanation for this apparent discrepancy. We also present simulations of the closed-to-open transition which are in agreement with the flexibility concept and with experimental energetics data.

  • PDF

Study on Thermal and Structural Properties of Epoxy/Elastomer Blend (에폭시/엘라스토머 블렌드의 열적 및 구조적 특성에 관한 연구)

  • Lee Kyoung-Yong;Lee Kwan-Woo;Choi Yong-Sung;Park Dae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.11
    • /
    • pp.556-560
    • /
    • 2004
  • In this paper, thermal and structural properties of epoxy/elastomer blend were measured by DSC, TGA and FESEM. Specimens were made of dumbbell forms by the ratio of 5, 10, 15, and 20[phr] by changing elastomer content. The measuring temperature ranges of DSC were from -20[℃] to 150[℃] and heating rate was 4[℃/min]. And the measuring temperature ranges of TGA were from 0[℃] to 800[℃], and heating rate was 5[℃/min]. Also we observed structure of specimens through FESEM with magnification of 1000 times and voltage of 15[kV] by breaking quenched specimens. As experimental results, we could know that thermal and structural properties were improved according to decrease of elastomer content. Because it increased glass transition temperature, high temperature and structure of elastic epoxy.

Deterministic structural and fracture mechanics analyses of reactor pressure vessel for pressurized thermal shock

  • Jhung, M.J.;Park, Y.W.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.103-118
    • /
    • 1999
  • The structural integrity of the reactor pressure vessel under pressurized thermal shock (PTS) is evaluated in this study. For given material properties and transient histories such as temperature and pressure, the stress distribution is found and stress intensity factors are obtained for a wide range of crack sizes. The stress intensity factors are compared with the fracture toughness to check if cracking is expected to occur during the transient. A round robin problem of the PTS during a small break loss of coolant transient has been analyzed as a part of the international comparative assessment study, and the evaluation results are discussed. The maximum allowable nil-ductility transition temperatures are determined for various crack sizes.