• Title/Summary/Keyword: Structural Transition

Search Result 728, Processing Time 0.022 seconds

Stability and Structural Change of cAMP Receptor Protein at Low and High cAMP Concentrations

  • GANG JONGBACK;CHUNG HYE-JIN;PARK GWI-GUN;PARK YOUNG-SEO;CHOI SEONG-JUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1392-1396
    • /
    • 2005
  • Proteolytic digestion and CD measurement of wild-type and mutant cyclic AMP receptor proteins (CRPs) were performed either in the presence or absence of cyclic nucleotide. Results indicated that transition of a structural change to the hinge region by the binding of cAMP to the anti site was required for the binding of cAMP to the syn site near the hinge region and, although the occupancy of cAMP in the anti site increased the protein stability, CRP adopted more a stable conformation by the binding of cAMP to the syn site.

A homogenization approach for uncertainty quantification of deflection in reinforced concrete beams considering microstructural variability

  • Kim, Jung J.;Fan, Tai;Reda Taha, Mahmoud M.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.503-516
    • /
    • 2011
  • Uncertainty in concrete properties, including concrete modulus of elasticity and modulus of rupture, are predicted by developing a microstructural homogenization model. The homogenization model is developed by analyzing a concrete representative volume element (RVE) using the finite element (FE) method. The concrete RVE considers concrete as a three phase composite material including: cement paste, aggregate and interfacial transition zone (ITZ). The homogenization model allows for considering two sources of variability in concrete, randomly dispersed aggregates in the concrete matrix and uncertain mechanical properties of composite phases of concrete. Using the proposed homogenization technique, the uncertainty in concrete modulus of elasticity and modulus of rupture (described by numerical cumulative probability density function) are determined. Deflection uncertainty of reinforced concrete (RC) beams, propagated from uncertainties in concrete properties, is quantified using Monte Carlo (MC) simulation. Cracked plane frame analysis is used to account for tension stiffening in concrete. Concrete homogenization enables a unique opportunity to bridge the gap between concrete materials and structural modeling, which is necessary for realistic serviceability prediction.

Surface effects on flutter instability of nanorod under generalized follower force

  • Xiao, Qiu-Xiang;Zou, Jiaqi;Lee, Kang Yong;Li, Xian-Fang
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.723-730
    • /
    • 2017
  • This paper studies on dynamic and stability behavior of a clamped-elastically restrained nanobeam under the action of a nonconservative force with an emphasis on the influence of surface properties on divergence and flutter instability. Using the Euler-Bernoulli beam theory incorporating surface effects, a governing equation for a clamped-elastically restrained nanobeam is derived according to Hamilton's principle. The characteristic equation is obtained explicitly and the force-frequency interaction curves are displayed to show the influence of the surface effects, spring stiffness of the elastic restraint end on critical loads including divergence and flutter loads. Divergence and flutter instability transition is analyzed. Euler buckling and stability of Beck's column are some special cases of the present at macroscale.

Effect of slip system transition on the deformation behavior of Mg-Al alloy: internal variable based approach (비탄성 변형 이론을 바탕으로 한 Mg-Al 합금의 슬립기구 천이 현상 해석)

  • Lee H. S.;Bang W.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.186-189
    • /
    • 2004
  • Although magnesium has high potential for structural material due to the lightweight and high specific strength, the structural application has been limited by the low ductility at room temperature. The reason of the poor ductility is few activated slip systems of magnesium (HCP structure) during deformation. As temperature increases, however, additional non-basal slip systems are incorporated to exhibit higher ductility comparable to aluminum. In the present study, a series of tensile tests of Mg-Al alloy has been carried out to study deformation behavior with temperature variation. Analysis of load relaxation test results based on internal variable approach gave information about relationship between the micromechanical character and corresponding deformation behavior of magnesium. Especially, the material parameter, p representing dislocation permeability through barriers was altered from 0.1 to 0.15 as the non-basal slip systems were activated at high temperature.

  • PDF

Cation Ordering and Microwave Dielectric Properties of $Ba(Mg_{1/3}Nb_{2/3})O_3$ Ceramics: II. Local Order-Disorder Phase Transition and Second Phase formation ($Ba(Mg_{1/3}Nb_{2/3})O_3$세라믹스의 양이온 규칙구조와 유전특성: II. 국부적 규칙-불규칙 상전이와 이차상 생성 거동)

  • 김영웅;박재환;김긍호;김윤호;박재관
    • Korean Journal of Crystallography
    • /
    • v.12 no.2
    • /
    • pp.81-87
    • /
    • 2001
  • We have studied the effect of sintering temperature and time on the cation ordering and second phase formation in Ba(Mg/sub 1/3/Nb/sub 2/3/)O₃(BMN) microwave ceramics by using transmission electron microscopy. The relationship between the structural-chemical behavior arid microwave dielectric properties has also been investigated. It is revealed that according to the sintering conditions the BMN ceramics show very diverse local ordering behavior, such as the development of domain twinning and "core-shell"-structured grains and the formation of local disordered domains, though having 1 : 2 cation ordering structure basically. The disordered structure is found in Mg-excess region. Such local chemical variation seems to be caused by the formation of BaNb₂O/sub 6/-like second phase in its neigh-boring grain boundary. The microwave dielectric quality factor of the ceramics decreases greatly with the increase of the structural-chemical inhomogeneity and diversity.

  • PDF

Parameter Effects on the Time to Reach Flashover Conditions in Single Room Fires (건물화재의 플래시오버 도달 시간에 영향을 미치는 인자들에 관한 연구)

  • Kim, Hyeong-Jin;Lilley, David-G.;Baek, Byung-Joon;Pak, Bock-Choon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1384-1388
    • /
    • 2003
  • In structural fires, flashover is characterized by the rapid transition in fire behavior from localized burning of fuel to the involvement of all combustibles in the enclosure. An investigation of parameter effects on the time to reach flashover conditions in a typical single room fire is undertaken using a zone method (FAST) and Thomas method. Major parameters affecting the time to reach flashover are found to be fire growth rate, ventilation opening area and internal room surface. The results of the FAST and the Thomas Method give very similar results of the time to reach flashover..

  • PDF

Buckling Design of Temporary Bridges Subjected to Both Bending and Compression (압축과 휨을 동시에 받는 가교량 주요부재의 좌굴설계)

  • So Byoung-Hoon;Kyung Yong-Soo;Bang Jin-Hwan;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.977-984
    • /
    • 2006
  • Generally main girders and steel piers of temporary bridges form the steel rahmen structure. In this study, the rational stability design procedure for main members of temporary bridges is presented using 3D system buckling analysis and second-order elastic analysis. 2 types of temporary bridges, which are possible to be designed and fabricated in reality, are chosen and the buckling design for them is performed considering load combinations of dead and live loads, thermal load, and wind load. Effective buckling length of steel piers, effects of live loads on effective length of main members, transition of ~id buckling modes, and effects of second-order analysis are investigated through case study of 2 temporary bridges.

  • PDF

Structural, FTIR and ac conductivity studies of NaMeO3 (Me ≡ Nb, Ta) ceramics

  • Roy, Sumit K.;Singh, S.N.;Kumar, K.;Prasad, K.
    • Advances in materials Research
    • /
    • v.2 no.3
    • /
    • pp.173-180
    • /
    • 2013
  • Lead-free complex perovskite ceramics $NaMeO_3$ ($Me{\equiv}Nb$, Ta) were synthesized using conventional solid state reaction technique and characterized by structural, FTIR and electrical (dielectric and ac conductivity) studies. The crystal symmetry, space group and unit cell dimensions were determined from the experimental results using FullProf software. XRD analysis of the compound indicated the formation of single-phase orthorhombic structure with the space group Pmmm (47). Dielectric studies showed the diffuse phase transition at $394^{\circ}C$ for $NaNbO_3$ and $430^{\circ}C$ for $NaTaO_3$. Ac conductivity in both the compounds follows Jonscher's power law.

An experimental study on strength of hybrid mortar synthesis with epoxy resin, fly ash and quarry dust under mild condition

  • Sudheer, P.;Muni Reddy, M.G.;Adiseshu, S.
    • Advances in materials Research
    • /
    • v.5 no.3
    • /
    • pp.171-179
    • /
    • 2016
  • Fusion and characterization of bisphenol-A diglycidyl ether based thermosetting polymer mortars containing an epoxy resin, Fly ash and Rock sand are presented here for the Experimental study. The specimens have been prepared by means of an innovative process, in mild conditions, of commercial epoxy resin, Fly ash and Rock sand based paste. In this way, thermosetting based hybrid mortars characterized by a different content of normalized Fly ash and Rock sand by a homogeneous dispersion of the resin have been obtained. Once hardened, these new composite materials show improved compressive strength and toughness in respect to both the Fly ash and the Rock sand pastes since the Resin provides a more cohesive microstructure, with a reduced amount of micro cracks. The micro structural characterization allows pointing out the presence of an Interfacial Transition Zone similar to that observed in cement based mortars. A correlation between micro-structural features and mechanical properties of the mortar has also been studied.

A Physical Characteristics of the Iodine Doping of N-Docosylquinolinium-TCNQ Langmuir-Blodgett films (N-Docosylquinolinium-TCNQ LB 막 의 Iodine Doping에 의한 물리적 특성)

  • 이창근;최강훈;김태완;신동명;강도열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.97-100
    • /
    • 1994
  • The present paper is devoted to the physical and electrical characteristics of N-docosyl- quinolinium-TCNQ films compared with the films doped with I$_2$. Iodine affects the degree of charge transfer and the conductivity of the films. The UV-visible absorption spectra of the film doped with I$_2$ shows that the peak of I$_3$ which had electronic transition at 300∼350nm and (TCNQ-)$_2$ dimer absorption disappered. The in-plane electrical conductivity of the films doped with I$_2$ were 1.4${\times}$10$\sub$-6/S/cm, which is two orders of magnitude higher conductivity than undoped LB films. The film structural difference between Y and Z-type may cause the conductivity. Another possible reasons of the structural difference was the overlapping TCNQ anion radical in LB films.