• Title/Summary/Keyword: Structural Synthesis

Search Result 797, Processing Time 0.023 seconds

Formation of Layered Bi5Ti3FeO15 Perovskite in Bi2O3-TiO2-Fe2O3 Containing System

  • Borse, Pramod H.;Yoon, Sang-Su;Jang, Jum-Suk;Lee, Jae-Sung;Hong, Tae-Eun;Jeong, Euh-Duck;Won, Mi-Sook;Jung, Ok-Sang;Shim, Yoon-Bo;Kim, Hyun-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.3011-3015
    • /
    • 2009
  • Structural and thermo-analytical studies were carried out to understand the phase formation kinetics of the single phase $Bi_5Ti_3FeO_{15}$ (BTFO) nanocrystals in $Bi_2O_3-Fe_2O_3-TiO_2$, during the polymerized complex (PC) synthesis method. The crystallization of Aurivillius phase $Bi_5Ti_3FeO_{15}$ layered perovskite was found to be initiated and achieved under the temperature conditions in the range of ${\sim}$800 to 1050$^{\circ}C$. The activation energy for grain growth of $Bi_5Ti_3FeO_{15}$ nanocrystals (NCs) was very low in case of NCs formed by PC (2.61 kJ/mol) than that formed by the solid state reaction (SSR) method (10.9 kJ/mol). The energy involved in the phase transformation of Aurivillius phase $Bi_5Ti_3FeO_{15}$ from $Bi_2O_3-Fe_2O_3-TiO_2$ system was ${\sim}$ 69.8 kJ/mol. The formation kinetics study of $Bi_5Ti_3FeO_{15}$ synthesized by SSR and PC methods would not only render a large impact in the nanocrystalline material development but also in achieving highly efficient visible photocatalysts.

A study on synthesis of $Li_{x}Mn_{2}O_{4}$ for asecondary battery with various $MnO_{2}$ structure (다양한 $MnO_{2}$ 구조에 따른 2차전지용 $Li_{x}Mn_{2}O_{4}$ 합성에 관한 연구)

  • 김익진;이영훈;이종호;이재한;장동환;이경희;고영신
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.600-608
    • /
    • 1996
  • Specific structural properties of Li intercalation reaction into the spinel relatedmanganese dioxide, $Li_{x}Mn_{2}O_{4}(0.2{\leq}x{\leq}2.0)$, are investigated by X-ray diffractional and electrochemical studies of Li/1M $LiClO_{4}$-propylene carbonate solution/$Li_{x}Mn_{2}O_{4}$ cell. The effect of the chemical composition and the reaction temperature on electrochemical parameter of $Li_{x}Mn_{2}O_{4}$ are studied by the phenomena of phase-transition, analysis of crystal lattice, fine structure, and thermal analysis. Treatment of the spinel $Li_{x}Mn_{2}O_{4}$ with aqueous acid was found to result in conversiton of $Li_{x}Mn_{2}O_{4}$ to nearly pure $MnO_{2}$, as evidenced by a reduction in the lattice constant $a_{c}$ from 8.255 to $8.031\;{\AA}$. At a composition range of $0.2{\leq}x{\leq}0.6$ in $Li_{x}Mn_{2}O_{4}$ the reduction proceeded in a homogeneous phase, which was characterized by a constant voltage of 3.9~3.7 V together with a lattice constant of $8.255\;{\AA}$.

  • PDF

Adipic Acid Assisted Sol-Gel Synthesis of Li1+x(Mn0.4Ni0.4Fe0.2)1-xO2 (0 < x < 0.3) as Cathode Materials for Lithium Ion Batteries

  • Karthikeyan, Kaliyappan;Amaresh, Samuthirapandian;Son, Ju-Nam;Kim, Shin-Ho;Kim, Min-Chul;Kim, Kwang-Jin;Lee, Sol-Nip;Lee, Yun-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.89-94
    • /
    • 2013
  • Layered $Li_{1+x}(Mn_{0.4}Ni_{0.4}Fe_{0.2})_{1-x}O_2$ (0 < x < 0.3) solid solutions were synthesized using solgel method with adipic acid as chelating agent. Structural and electrochemical properties of the prepared powders were examined by means of X-ray diffraction, Scanning electron microscopy and galvanostatic charge/discharge cycling. All powders had a phase-pure layered structure with $R\bar{3}m$ space group. The morphological studies confirmed that the size of the particles increased at higher x content. The charge-discharge profiles of the solid solution against lithium using 1 M $LiPF_6$ in EC/DMC as electrolyte revealed that the discharge capacity increases with increasing lithium content at the 3a sites. Among the cells, $Li_{1.2}(Mn_{0.32}Ni_{0.32}Fe_{0.16})O_2$ (x = 0.2)/$Li^+$ exhibits a good electrochemical property with maximum initial capacity of 160 $mAhg^{-1}$ between 2-4.5 V at 0.1 $mAcm^{-2}$ current density and the capacity retention after 25 cycles was 92%. Whereas, the cell fabricated with x = 0.3 sample showed continuous capacity fading due to the formation of spinel like structure during the subsequent cycling. The preparation of solid solutions based on $LiNiO_2-LiFeO_2-Li_2MnO_3$ has improved the properties of its end members.

Synthesis and Characterization of a Series of PtRu/C Catalysts for the Electrooxidation of CO (일산화탄소 산화를 위한 PtRu/C 시리즈 촉매의 합성 및 특성 연구)

  • Lee, Seonhwa;Choi, Sung Mook;Kim, Won Bae
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.432-439
    • /
    • 2012
  • The electrocatalytic oxidation of CO was studied using carbon-supported 20 wt% PtRu (PtRu/C) catalysts, which were prepared with different Pt : Ru atomic ratios from 7 : 3 to 3 : 7 using a colloidal method combined with a freeze-drying procedure. The bimetallic PtRu/C catalysts were characterized by various physicochemical analyses, including X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). CO stripping voltammetry measurements indicated that the addition of Ru with a Pt catalyst significantly improved the electrocatalytic activity for CO electrooxidation. Among the tested catalysts, the $Pt_5Ru_5/C$ catalyst had the lowest onset potential (vs.Ag/AgCl) and the largest CO EAS. Structural modification via lattice parameter change and electronic modification in the unfilled d band states for Pt atoms may facilitate the electrooxidation of CO.

Metal-Dinitrosyl Complexes(III) : Synthesis and Structural Study of Homo-, Hetero-dinuclear Molybdenum and Tungsten Complexes, $[Cl(phen)(NO)_2M({\mu}-pyz)M'(NO)_2(phen)Cl][ClO_4]_2 $(phen = 1,10-phenanthroline, pyz = pyrazine) (금속-디니트로실 착물 (제 3 보) : 몰리브덴과 텅스텐의 호모 및 헤테로 이핵 착물, $[Cl(phen)(NO)_2M({\mu}-pyz)M'(NO)_2(phen)Cl][ClO_4]_2 (phen=1,10-phenanthroline,\;pyz=pyrazine)$의 합성 및 구조에 대한 연구)

  • Sang-Oh Oh;Seong-Jong Mo
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.7
    • /
    • pp.655-661
    • /
    • 1993
  • The neutral monomeric compounds $[Mo(NO)_2Cl_2(phen)]$ and $[W(NO)_2Cl_2(phen)]$ (phen= 1,10-phenanthroline) have been prepared by reactions of polymeric compounds $[{Mo(NO)_2Cl_2}n],\;[{W(NO)_2Cl_2}n]$ with chelate ligands. Additions of one equivalent of silver(I) perchlorate to these cis-dinitrosyl compounds in acetone solution produce $[Mo(NO)_2(phen)(S)Cl][ClO_4]\;and\;[W(NO)_2(phen)(S)Cl][ClO_4]$ (S = acetone). The homo- and hetero-dinuclear complexes, $[Cl(phen)(NO)_2M(pyz)M'(NO)_2(phen)Cl][ClO_4]_2$ (M = Mo, W) and $[Cl(phen)(NO)_2M(pyz)M'(NO)_2(phen)Cl][C1O_4]_2$ (M = Mo, M' = W) have been prepared by these monocationic complexes with pyrazine ligand respectively. These complexes characterized by elemental analysis, $1^H-\;and\;^{13}C-NMR$, infrared, and UV-visible spectroscopy are reported. The spectral data indicate that homo- and hetero-dinuclear complexes were symmetrical structures of $C_{2v}$.

  • PDF

Catalytic Hydrogenation of Unsaturated Organic Compounds by Rutheniumhydridonitrosyl Complexes (Rutheniumhydridonitrosyl 착물을 이용한 불포화 유기화합물의 수소화 반응)

  • Park, Mi Young;Kim, Young Joong;Cho, Ook Jae;Lee, Ik Mo
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.6
    • /
    • pp.445-452
    • /
    • 1996
  • Catalytic hydrogenation of ketones and aldehydes by RuH(NO)$L_3$ ($L_3$: $PPh_3$, PhP($CH_2CH_2PPh_2$)$_2$(etp)) was investigated to examine the reaction mechanism and the competence of hydridonitrosyl complexes as catalysts for organic synthesis. RuH(NO)$L_3$ showed catalytic activity for the hydrogenation and the activities of catalysts were dependent on the steric and electronic factors. The less the steric demands of the substrates become, the more activity the catalysts show. For the electronic effect, the more the partial positive charge on the carbonyl carbon atom in ketones becomes and the more the double bond character of carbonyl group in aldehydes becomes, the more active the catalysts are. These results reflect the difference of reaction mechanisms of two substrates, ketones and aldehydes. Catalytic activities of RuH(NO)(etp) and RuH(NO)($PPh_3$)$_3$ in the presence of extra $PPh_3$ toward hydrogenation showed the existence of a reaction pathway accompanied with the change of the bonding modes of NO ligand. The roles of excess $PPh_3$ change with increase of the mole ratio of $PPh_3$ to catalysts; prevention of ligand dissociation from comlexes → bases → ligands. The activity of RuH(NO)(etp) was lower than that of RuH(NO)($PPh_3$)$_3$ toward the hydrogenation of the same substrates mainly due to the structural difference. These catalysts showed the selectivity toward olefin hydrogenation over carbonyl groups in the competitive reaction.

  • PDF

Filter Media Specifications for Low Impact Development: A Review of Current Guidelines and Applications (LID 시설 여재에 관한 기술지침 및 적용에 관한 고찰)

  • Guerra, Heidi B.;Kim, Lee-Hyung;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.321-333
    • /
    • 2019
  • A primary aspect of low impact development (LID) design that affects performance efficiency, maintenance frequency, and lifespan of the facility is the type of filter media as well as the arrangement or media profile. Several LID guidelines providing media specifications are currently available and numerous studies have been published presenting the effectiveness of these systems. While some results are similar and consistent, some of them still varies and only a few focuses on the effect of filter media type and arrangement on system performance. This creates a certain level of uncertainty when it comes to filter media selection and design. In this review, a synthesis of filter media specifications from several LID design guidelines are presented and relevant results from different laboratory and field studies are highlighted. The LID systems are first classified as infiltration or non-infiltration structures, and vegetated or non-vegetated structures. Typical profiles of the media according to classification are shown including the different layers, materials, and depth. In addition, results from previous studies regarding the effect of filter media characteristics on hydraulic and hydrologic functions as well as pollutant removal are compared. Other considerations such as organic media leaching, clogging, media washing, and handling during construction were also briefly discussed. This review aims to provide a general guideline that can contribute to proper media selection and design for structural LIDs. In addition, it also identifies opportunities for future research.

Growth and Electrical Properties of Spinel-type ZnCo2O4 Thin Films by Reactive Magnetron Sputtering (반응성 때려내기 방법에 의한 스피넬 형 ZnCo2O4 박막의 성장과 전기적 물성)

  • Song, In-Chang;Kim, Hyun-Jung;Sim, Jae-Ho;Kim, Hyo-jin;Kim, Do-jin;Ihm, Young-Eon;Choo, Woong-Kil
    • Korean Journal of Materials Research
    • /
    • v.13 no.8
    • /
    • pp.519-523
    • /
    • 2003
  • We report the synthesis of cubic spinel $ZnCo_2$$O_4$thin films and the tunability of the conduction type by control of the oxygen partial pressure ratio. Zinc cobalt oxide films were grown on$ SiO_2$(200 nm)/Si substrates by reactive magnetron sputtering method using Zn and Co metal targets in a mixed Ar/$O_2$atmosphere. We found from X-ray diffraction measurements that the crystal structure of the zinc cobalt oxide films grown under an oxygen-rich condition (the $O_2$/Ar partial pressure ratio of 9/1) changes from wurtzite-type $Zn_{1-x}$ $Co_{X}$O to spinel-type $ZnCo_2$$O_4$with the increase of the Co/Zn sputtering ratio,$ D_{co}$ $D_{zn}$ . We noted that the above structural change accompanied by the variation of the majority electrical conduction type from n-type (electrons) to p-type (holes). For a fixed $D_{co}$ $D_{zn}$ / of 2.0 yielding homogeneous spinel-type $_2$O$ZnCo_4$films, the type of the majority carriers also varied, depending on the$ O_2$/Ar partial pressure ratio: p-type for an $O_2$-rich and n-type for an Ar-rich atmosphere. The maximum electron and hole concentrations for the Zn $Co_2$ $O_4$films were found to be 1.37${\times}$10$^{20}$ c $m^{-3}$ and 2.41${\times}$10$^{20}$ c $m^{-3}$ , respectively, with a mobility of about 0.2 $\textrm{cm}^2$/Vs and a high conductivity of about 1.8 Ω/$cm^{-1}$ /.

Biotinoyl Domain of Human Acetyl-CoA Carboxylase;Structural Insights into the Carboxyl Transfer Mechanism

  • Lee, Chung-Kyung;Cheong, Hae-Kap;Ryu, Kyoung-Seok;Lee, Jae-Il;Jeon, Young-Ho;Cheong, Chae-Joon
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.1
    • /
    • pp.1-13
    • /
    • 2008
  • Acetyl-CoA carboxylase (ACC) catalyzes the first step in fatty acid biosynthesis: the synthesis of malonyl-CoA from acetyl-CoA. As essential regulators of fatty acid biosynthesis and metabolism, ACCs are regarded as therapeutic targets for the treatment of metabolic diseases such as obesity, In ACC, the biotinoyl domain performs a critical function by transferring an activated carboxyl group from the biotin carboxylase domain to the carboxyl transferase domain, followed by carboxyl transfer to malonyl-CoA. Despite the intensive research on this enzyme, only the bacterial and yeast ACC structures are currently available, To explore the mechanism of ACC holoenzyme function, we determined the structure of the biotinoyl domain of human ACC2 and analyze its characteristics using NMR spectroscopy. The 3D structure of the hACC2 biotinoyl domain has a similar folding topology to the previously determined domains from E. coli and P. Shermanii, however, the 'thumb' structure is absent in the hACC2 biotinoyl domain. Observations of the NMR signals upon the biotinylation indicate that the biotin group of hACC2 does not affect the structure of the biotinoyl domain, while the biotin group for E. coli ACC interacts directly with the thumb residues that are not present in the hACC2 structure. These results imply that, in the E. coli ACC reaction, the biotin moiety carrying the carboxyl group from BC to CT can pause at the thumb of the BCCP domain. The human biotinoyl domain, however, lacks the thumb structure and does not have additional non-covalent interactions with the biotin moiety; thus, the flexible motion of the biotinylated lysine residue must underlie the "swinging arm" motion. This study provides insight into the mechanism of ACC holoenzyme function and supports the "swinging arm" model in human ACCs.

Effects of Growth Temperature on Hydrothermally Grown ZnO Nanorod Arrays (수열합성법으로 성장된 산화 아연 나노로드의 성장 온도에 따른 구조적, 광학적 특성 연구)

  • Jeong, Yong-Il;Ryu, Hyuk-Hyun
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.211-216
    • /
    • 2011
  • In this study, the effects of growth temperature on structural and optical properties of hydrothermally grown ZnO nanorod arrays have been investigated. Zinc nitrate ($Zn(NO_3)_2$) and hexamethylenetetramine were used as precursors. The ZnO buffered Si(100) with a thickness of 40 nm was used as the substrates. The ZnO nanorods were grown on these substrates with the temperature ranging from 55 to $115^{\circ}C$. The results were characterized by scanning electron microscope, X-ray diffraction and room temperature photoluminescence measurements. Well-aligned ZnO nanorods arrays were obtained from all samples. The tips of nanorods were flat when the temperature was less than $95^{\circ}C$, and the sharp-tip nanoneedle-like morphologies were obtained with the temperature of $115^{\circ}C$. In addition, some bundles were on the nanorods arrays with $115^{\circ}C$ due to the non-equilibrium growth. The growth temperature could affect the crystal and optical properties of ZnO. For the effects on crystal properties, the intensity of (002) peak was increased as the temperature was increased to $75^{\circ}C$, then decreased as the temperature was further increased to $115^{\circ}C$. As for the effects on optical properties, the intensity ratio of UV peak to visible peak is increased with the temperature increasing and the strongest UV peak intensity was obtained with the growth temperature of $95^{\circ}C$.