• Title/Summary/Keyword: Structural Rigidity

검색결과 401건 처리시간 0.027초

알루미늄 스페이스 프레임 차량의 구조 최적화 설계 기법 (Structural Design Optimization of the Aluminum Space Frame Vehicle)

  • 강혁;경우민
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.175-180
    • /
    • 2008
  • Due to the global environment problems and the consumer's need for higher vehicle performance, it becomes very important for the global car makers to reduce vehicle weight. To reduce vehicle weight, many car makers have tried to use lightweight materials, for example, aluminum, magnesium, and plastics, for the vehicle structures and components. Especially, the ASF(aluminum space frame) is known for the excellent concept of the vehicle to satisfy structural rigidity, safety performance and weight reduction. In this research, the design of experiments and the multi-disciplinary optimization technique were utilized to meet the weight and structural rigidity target of the ASF. For the structural performance of the ASF, the locations and the size of aluminum extruded frames, aluminum cast nodes, and the aluminum sheets were optimized. As a result, the optimization design procedure has been set up to meet both structural and weight target of the ASF, and the assembled ASF showed good structural performance and weight reduction.

Analysis of the Traditional Setting-up as an Application for Spatial Composition

  • NamGoong, Sun;Lee, Yu-Ri
    • 한국가구학회지
    • /
    • 제21권3호
    • /
    • pp.216-228
    • /
    • 2010
  • Recently, there is a new issue, among the contemporary people, for new life style, such as green design and well being. This trend brought up the necessity that there should be alternatives for interior spatial design. In order to catch up with these new issues, the new convenient and environment friendly methods are in need. Space composition using setting-up is skill that can express both the structural aspect and esthetic because it represents traditional beauty into the contemporary age through the structural rigidity and formal beauty. Also the lumber, as main materials for setting up, is in line with well being life style and environment friendliness. The construction of structure by setting-up has advantages in terms of the reuse and the convenience in that the construction of structure is adjustable according to environment. And setting-up has enough plasticity not only because of its own role as linking the objects but also because of being framed by itself. Therefore setting-up will be a design element, if it is expressed outward. Thus, this study aims to give a guide line about how to apply the result from the evaluating that "what is the most suitable setting-up" and "what is the most suitable detail setting-up", based on that structural rigidity, decorativeness and the ease of works. As a result of evaluation, the most excellent types of setting-up in terms of structural rigidity are "Jangbu" and "Panjae" and "Yeongui". The most excellent types of setting-up in terms of decorativeness are "Panjae" and "Yeongui", and the most excellent type of the ease of work is "Mat". And also the most applicable detail setting-up for the utilization of spatial composition is proposed.

  • PDF

The effect of architectural form on the earthquake behavior of symmetric RC frame systems

  • Inan, Tugba;Korkmaz, Koray;Cagatay, Ismail H.
    • Computers and Concrete
    • /
    • 제13권2호
    • /
    • pp.271-290
    • /
    • 2014
  • In this study, structural irregularities in plan, which has a considerable effect on earthquake behavior of buildings, have been investigated in detail based on Turkish Earthquake Code 2007. The study consists of six main parametric models and a total of 144 sub-models that are grouped based on RC structural systems such as frame, frame + rigid core, frame with shear wall, and frame with shear wall + rigid core. All models are designed to have both symmetrical plan geometry and regular rigidity distribution. Changes in the earthquake behavior of buildings were evaluated according to the number of storeys, number of axes and the configuration of structural elements. Many findings are obtained and assessed as a result of the analysis for each structural irregularity. The study shows that structural irregularities can be observed in completely symmetric buildings in terms of plan geometry and rigidity distribution.

단층래티스돔의 좌굴특성에 미치는 형상초기부정에 관한 연구 (II) (제II보 핀접합의 경우) (Study on Buckling-Characteristics of Single-Layer Latticed Domes subject to Initial Imperfection (II) (Part II In the case of Pinned-Joint))

  • 정환목;권영환
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 가을 학술발표회논문집
    • /
    • pp.74-78
    • /
    • 1993
  • Compared with rigid-jointed latticed dome, in pinned-joint latticed dome, results of Ref.1 showed reduction of buckling strength by decline of junction's rotational rigidity. Moreover, with decline of junction's rotational rigidity, geometrical initial imperfection incurs more and more reduction of buckling-strength. This study, subsequently the case of rigid-joint domes, is aimed at analyzing buckling-characteristics of pinned-joint single-layer latticed domes with triangular network subjected to initial imperfection.

  • PDF

Simplified dynamic analysis of slender tapered thin-walled towers with additional mass and rigidity

  • Takabatake, Hideo;Mizuki, Akira
    • Structural Engineering and Mechanics
    • /
    • 제3권1호
    • /
    • pp.61-74
    • /
    • 1995
  • A linearly tapered, doubly symmetric thin-walled closed member, such as power-transmission towers and tourist towers, are often characterized by local variation in mass and/or rigidity, due to additional mass and rigidity. On the preliminary stage of design the closed-form solution is more effective than the finite element method. In order to propose approximate solutions, the discontinuous and local variation in mass and/or rigidity is treated continuously by means of a usable function proposed by Takabatake(1988, 1991, 1993). Thus, a simplified analytical method and approximate solutions for the free and forced transverse vibrations in linear elasticity are demonstrated in general by means of the Galerkin method. The solutions proposed here are examined from the results obtained using the Galerkin method and Wilson-${\theta}$ method and from the results obtained using NASTRAN.

An approach for calculating the failure loads of unprotected concrete filled steel columns exposed to fire

  • Wang, Y.C.;Kodur, V.K.R.
    • Structural Engineering and Mechanics
    • /
    • 제7권2호
    • /
    • pp.127-145
    • /
    • 1999
  • This paper deals with the development of an approach for evaluating the squash load and rigidity of unprotected concrete filled steel columns at elevated temperatures. The current approach of evaluating these properties is reviewed. It is shown that with a non-uniform temperature distribution, over the composite cross-section, the calculations for the squash load and rigidity are tedious in the current method. A simplified approach is proposed to evaluate the temperature distribution, squash load, and rigidity of composite columns. This approach is based on the model in Eurocode 4 and can conveniently be used to calculate the resistance to axial compression of a concrete filled steel column for any fire resistance time. The accuracy of the proposed approach is assessed by comparing the predicted strengths against the results of fire tests on concrete filled circular and square steel columns. The applicability of the proposed approach to a design situation is illustrated through a numerical example.

아파트 슬래브의 진동평가에 관한 연구 (A Study on Vibration Analysis for the Slab of Apartment Building)

  • 박강근;김용태;최영화
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.333-340
    • /
    • 2006
  • In these days the floor vibration is beginning to make its appearance of the environmental dispute in apartment building. Standard floor system are suggested for the settlement of this issue by government. The sound of floor impact sound is needed to secure comfortable quality in housing. Also, it is required an accurate analysis and a proper evaluation for floor vibration. Refine model is necessary for the floor system of housing to analyze accurately the floor vibration. But this refine model is not efficient because it is required so much running time for vibration analysis and it is difficult of modeling of standard floor slab. In this paper, new modeling methods of standard floor slab are proposed for the accurate rigidity evaluation. By using the new modeling method, the accurate vibration response can be obtained and can accurately evaluate the rigidity of standard floor system with resilient materials. Therefore the proposed modeling method is of practical use for vibration analysis of floor system of apartment building.

  • PDF

SI 기법을 이용한 현수교 행어케이블의 장력 추정 (Estimating Tensile Force of Hangers in Suspension Bridges Using SI Technique)

  • 박대효;문석용;김병화
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.786-793
    • /
    • 2006
  • For the purpose of developing a vibration-based tension force evaluation procedure for hangers in suspension bridges, a 3D finite element model of hangers is constructed in this paper. With the developed finite element formulation, a frequency-based sensitivity-updating algorithm is applied to identify the target cable system the proposed method is also able to identify the flexural rigidity. the axial rigidity, and the torsion rigidity of a cable. For a field application, a vibration test on hangers of the Yong Jong Grand Suspension Bridge is carried out and the collected data is used to verify the proposed method.

  • PDF

쉴드터널 라이닝 세그멘트의 해석과 거동 특성 (Analysis and Structural Behavior of Shield Tunnel Lining Segment)

  • 이환우;김관수;김광양;강대희
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.757-762
    • /
    • 2007
  • The lining segment which is the main structure of the shield tunnel consists of joints, not continua. Past international and domestic design data have been commonly used for design practices without specific verification about the structural analysis model, design load, and affection of the soil constant of the lining segment. In this study, the propriety is estimated through the comparison between analytical solution and numerical solution for segment analysis and design models of the shield tunnel which is being used internationally and domestically. As a result, the full. circumferential beam jointed spring model (1R-S0) is suggested by considering aspects of convenient use, application to field condition, and accuracy of analysis result. With suggested model, the parameter analysis was conducted for joint stiffness, ground rigidity, joint distribution, and joint number.

  • PDF

반강접 접합부를 갖는 강골조의 거동에 대한 해석적 연구 (An Analytical Study on the Behavior of Steel Frames with Semi-Rigidity of Beam-to-Column Connections)

  • 김종성
    • 한국강구조학회 논문집
    • /
    • 제15권5호통권66호
    • /
    • pp.551-559
    • /
    • 2003
  • 강골조의 보-기둥 접합부에 대한 해석과 설계는 일반적으로 완전한 강접이나 마찰이 없는 완전한 핀접합으로 가정하는 것이 보통이다. 이러한 경우, 구조해석 및 설계과정을 단순화시키는 장점은 있으나, 실제 철골 접합부에서는 작용하중에 대하여 어느 정도의 모멘트 전달과 회전구속력을 갖는 반강접으로 해석해야 하므로 실제와는 다소 차이가 날 수 있다. 이에, 본 연구에서는 고정계수에 의한 기둥-보 접합부의 반강접성과 P-delta효과를 고려한 골조의 비선형 해석 프로그램을 작성하고, 수치해석을 통해 평면 강골조의 변형과 내력에 미치는 접합강성의 영향을 검토하였으며, 상용의 해석프로그램인 MIdas Gen과 비교하였다.