• Title/Summary/Keyword: Structural Reliability Assessment

Search Result 275, Processing Time 0.022 seconds

A Study on the Structure of Children's Multiple Intelligence Evaluation Instrument(MIDAS-MYC) by Teacher's Evaluation (교사가 평가한 유아 다중지능 평가도구(MIDAS-MYC)의 구조에 관한 연구)

  • Yang, Ok Seung;Shin, Hwa-Sik;Lee, Kyung-Ok;Hwang, Hye-Kyoung;Kim, Seung- Ok
    • Korean Journal of Child Studies
    • /
    • v.25 no.4
    • /
    • pp.115-128
    • /
    • 2004
  • In this study, we examined the relationship among Multiple Intelligence constructs and the relationship among the sub-areas and analysed the development of the Multiple Intelligence according to age and gender to evaluate Korean children's Multiple Intelligence structures that teachers evaluated based on MIDAS-MYC. The subjects of the study consisted of 158 4-5 year old children (71 4-year-old group(boy 38, girl 33); 87 5-year-old group(boy 40, girl 47)) in Seoul and Gyeonggi. We found several results which are as follows. 1) Reliability on each area of intelligence in MIDAS-MYC was good. 2) The result of confirmatory factor analysis using the model of structural equation modeling was consistent with the results of other studies that children's Multiple Intelligence consists of eight intelligent areas that are independent to each other but are relative to each other. In particular, interpersonal-intrapersonal intelligence, languistic-intrapersonal intelligence, languistic-Interpersonal intelligence, and languistic-logic/math intelligence were high correlation. However, physical/motion-naturalist intelligence and musical-logic/math intelligence were low correlation. 3) Children's multiple intelligence differed according to age and sex, the 5-year-old was higher than 4-year-old and girls were higher than boys in a general way. 4) There was high correlation between the result of evaluation based on MIDAS-MYC and the result of teacher's subjective evaluation about children's Multiple Intelligence.

  • PDF

Utilization of a Microphone to Acquire Mobility in Seismic Testing (탄성파시험의 이동성 확보를 위한 마이크로폰 센서의 활용)

  • Joh, Sung-Ho;Ramli, Bukhari;Rahman, Norinah Abd
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1509-1521
    • /
    • 2013
  • Social demand for the stability of structures lead to the development of the technology to accomplish it. The non-destructive seismic technique, which is able to assess structural integrity of infrastructures, belongs to this category. Seismic technique is focused on the measurement of seismic velocity propagating through the material, and has to utilize sensors coupled to material surface, which does not allow the testing to be performed on the fly. In this paper, a general vocal microphone, which works as a non-contact sensor, was adopted to facilitate seismic testing with mobility and efficiency improved. The target of using microphones was oriented toward quality assessment of compacted subgrade, stiffness evaluation and health monitoring of concrete structures. Experimental parametric study and field applications were performed to investigate reliability and efficiency of microphones. Finally, the optimal test configuration of microphones was suggested for resonance tests and surface-wave tests.

A Study on the Best Estimate of Seismicity Parameter b-Value and Its Application for the Seismic Hazard Analysis of the Korean Peninsula (한반도의 최적 지진원 변수 b값 및 그의 적용에 관한 연구)

  • Seo, Jeong-Moon;Rhee, Hyun-Me;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • The best estimate Gutenberg-Richter b-value of the Korean Peninsula was estimated through an expert panel assigned to evaluate the currently available study results. The panel's assessment yielded that the Gutenberg-Richter b-value was relatively constant over the Korean Peninsula and was independent of seismic zones with an average value of 0.96. Also, the currently most reliable four seismotechtonic structural maps were produced. The effects on the seismic hazard were analyzed by applying the results to the Shinwuljin Units 1&2 NPP site. As a result, the mean hazard level at 0.2g was decreased by about 70-80% (on the order of 0.6-0.7), and the uncertainty band at 0.2g for the reliability band of 15%-85% was significantly reduced. It was proposed, for conservatism, to use b=0.95 over all seismic zones for seismic hazard analysis in the future.

Nonlinear static and dynamic analyses of reinforced concrete buildings - comparison of different modelling approaches

  • Carvalho, Goncalo;Bento, Rita;Bhatt, Carlos
    • Earthquakes and Structures
    • /
    • v.4 no.5
    • /
    • pp.451-470
    • /
    • 2013
  • It generally accepted that most building structures shall exhibit a nonlinear response when subjected to medium-high intensity earthquakes. It is currently known, however, that this phenomenon is not properly modelled in the majority of cases, especially at the design stage, where only simple linear methods have effectively been used. Recently, as a result of the exponential progress of computational tools, nonlinear modelling and analysis have gradually been brought to a more promising level. A wide range of modelling alternatives developed over the years is hence at the designer's disposal for the seismic design and assessment of engineering structures. The objective of the study presented herein is to test some of these models in an existing structure, and observe their performance in nonlinear static and dynamic analyses. This evaluation is done by the use of two of a known range of advanced computer programs: SAP2000 and SeismoStruct. The different models will focus on the element flexural mechanism with both lumped and distributed plasticity element models. In order to appraise the reliability and feasibility of each alternative, the programs capabilities and the amount of labour and time required for modelling and performing the analyses are also discussed. The results obtained show the difficulties that may be met, not only in performing nonlinear analyses, but also on their dependency on both the chosen nonlinear structural models and the adopted computer programs. It is then suggested that these procedures should only be used by experienced designers, provided that they are aware of these difficulties and with a critical stance towards the result of the analyses.

Earthquake risk assessment of concrete gravity dam by cumulative absolute velocity and response surface methodology

  • Cao, Anh-Tuan;Nahar, Tahmina Tasnim;Kim, Dookie;Choi, Byounghan
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.511-519
    • /
    • 2019
  • The concrete gravity dam is one of the most important parts of the nation's infrastructure. Besides the benefits, the dam also has some potentially catastrophic disasters related to the life of citizens directly. During the lifetime of service, some degradations in a dam may occur as consequences of operating conditions, environmental aspects and deterioration in materials from natural causes, especially from dynamic loads. Cumulative Absolute Velocity (CAV) plays a key role to assess the operational condition of a structure under seismic hazard. In previous researches, CAV is normally used in Nuclear Power Plant (NPP) fields, but there are no particular criteria or studies that have been made on dam structure. This paper presents a method to calculate the limitation of CAV for the Bohyeonsan Dam in Korea, where the critical Peak Ground Acceleration (PGA) is estimated from twelve sets of selected earthquakes based on High Confidence of Low Probability of Failure (HCLPF). HCLPF point denotes 5% damage probability with 95% confidence level in the fragility curve, and the corresponding PGA expresses the crucial acceleration of this dam. For determining the status of the dam, a 2D finite element model is simulated by ABAQUS. At first, the dam's parameters are optimized by the Minitab tool using the method of Central Composite Design (CCD) for increasing model reliability. Then the Response Surface Methodology (RSM) is used for updating the model and the optimization is implemented from the selected model parameters. Finally, the recorded response of the concrete gravity dam is compared against the results obtained from solving the numerical model for identifying the physical condition of the structure.

Assessment of Questionnaire of Physical Activity at Workplace Based on the Social Cognitive Theory (PAWPQ-SCT): A Psychometric Study in Iranian Gas Refinery Workers

  • Kamel Ghobadi;AhmadAli Eslami;Asiyeh Pirzadeh;Seyed Mohammad Mazloomi;Fatemeh Hosseini
    • Safety and Health at Work
    • /
    • v.14 no.4
    • /
    • pp.358-367
    • /
    • 2023
  • Background: This study aimed to develop and assess the psychometric features of the Physical Activity at Workplace Questionnaire (PAWPQ) based on the Social Cognitive Theory (SCT) to evaluate employees' physical activity (PA) behaviors at the workplace. Methods: This psychometric cross-sectional study was conducted on 455 employees working in one of the gas refineries in Iran. The participants were selected using the proportional stratified sampling method in 2019. The data collection tools were a demographic information questionnaire, the short form of the International Physical Activity Questionnaire (IPAQ), and a questionnaire developed based on the SCT, whose psychometric features were confirmed in terms of validity and reliability. Data were analyzed using SPSS22 and AMOS20 software. Results: The first version of PAWPQ-SCT had 74 items. After evaluating content and face validity, nine items were removed. The results of the content validity index (0.98), content validity ratio (0.86), and impact score (3.62) were acceptable for the whole instrument. In exploratory factor analysis, after removing seven items-58-item final version of the scale-six factors could explain 73.54% of the total variance. The results of structural equation modeling showed the acceptable fit of the model into the data (RMSEA = 0.052, CFI = 0.917, NFI = 0.878, TLI = 0.905, IFI = 0.917, CMIN/DF = 2.818). Cronbach's alpha coefficient and Intraclass Correlation were 0.90 and 0.86, respectively. Conclusion: This study confirmed that the psychometric features of the 58-item final version of PAWPQSCT constructs were acceptable in a sample of Iranian employees. This questionnaire can be used as a valid and reliable tool to evaluate Iranian employees' PA behaviors and develop effective educational interventions for workers and managers.

Reliability Assessment of Impact Tensile Testing Apparatus using a Drop-bar Striker for Intermediate Strain-rate Range and Evaluation of Dynamic Deformation Behaviors for a Carbon Steel (중간 변형률속도용 낙추식 충격 인장시험 장치의 신뢰성 확보 및 탄소강의 동적변형거동 평가)

  • Bae, Kyung Oh;Kim, Dae Woong;Shin, Hyung Seop;Park, Lee Ju;Kim, Hyung Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.573-579
    • /
    • 2016
  • Studies on the deformation behavior of materials subjected to impact loads have been carried out in various fields of engineering and industry. The deformation and fracture of members for these machines/structures are known to correspond to the intermediate strain-rate region. Therefore, for the structural design, it is necessary to consider the dynamic deformation behavior in these intermediate strain-rate ranges. However, there have been few reports with useful data about the deformation and fracture behavior at intermediate strain-rate ranges. Because the intermediate strain-rate region is located between quasi-static and high strain-rate regions, it is difficult to obtain the intermediate strain-rate using conventional reasonable test equipment. To solve this problem, in this study, the measurement reliability of the constructed drop-bar impact tensile test apparatus was established and the dynamic behavior at the intermediate strain-rate range of carbon steels was evaluated by utilizing the apparatus.

Development of Connection Model based on FE Analysis to Ensure Stability of Steel Storage Racks (적재설비 안정성 확보를 위한 FE 해석 기반의 연결부 모델 개발)

  • Heo, Gwanghee;Kim, Chunggil;Yu, Darly;Jeon, Jongsu;Lee, Chinok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.349-356
    • /
    • 2018
  • This paper attempts to develop a connection model based on FE analysis that can be applied to the evaluation of earthquake fragility of Steel Storage Racks lacking research in Korea. In order to accomplish this goal, shaking table tests, modal tests, and various member tests (8 case, push-over test) for structural members have been conducted to understand the behavior of steel storage racks. Based on the experimental results, detailed modeling of the joints was conducted using the NX-Nastran program in order to develop a connection model for Steel storage racks to be applied to the seismic vulnerability assessment. Especially, surface to surface contact element and spring element are applied to simulate the connection between the column member and the beam member connected by the simple latch method. Spring element model developed and applied ARX (Auto Regressive eXogenous) based mathematical model. The simulation results based on the FE model showed excellent reliability with a mutual error rate of less than 8% when compared with the member test results. As a result, it was confirmed that the FE model based connection model developed in the study can be applied to the analytical model for the seismic vulnerability assessment of Steel storage racks.

The Stability Assessment of ASSM Tunnels in Service (공용중인 ASSM 터널의 안정성 평가)

  • Kwon, Young Jeong;Park, Min Chul;Shin, Hyo Hee;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.150-159
    • /
    • 2011
  • The need of securing the stability and extending service lives by efficient maintenance of deteriorated tunnels for several decades has been increased. The stability and the usability of conventional tunnels can be decreased by change of physical properties of the surrounding ground, geometrical properties of the tunnel, an underground water level, environmental conditions, oxidation of lining and the breakdown of constituent materials. In respect of a long-term view, it is need to check all sorts of degradation, the degree of damage and durability to improve the serviceability and to come up with measures to maintain effectively. This paper is about study to analyze the stability of conventional tunnels(American Steel Support Method. ASSM). Three tunnels are chosen in those built in the 1930s and 1960s and the locations of tunnels are selected variously(ChungCheong, GyungBuk, GangWon, Jeolla, etc.) to secure reliability of this study. The state of repair and reinforcement of linings, cracks, and thickness and strength of lining of conventional tunnels in service are researched, compared and analyzed. The crack gauge, the GPR, the schmitt hammer was used for the crack investigation, cavitation, the strength respectively. By using these, the comparative analysis for conventional tunnels was conducted. As a result, there are more cracks in tunnels built in the 1930s than those of tunnels built in the 1960s, and lining strength of the 1930s is higher than those of the 1960s. The thickness of lining in tunnels built in the 1960s is higher than those in tunnels built in the 1930s. In proportion to thickness, cavitation occurred more frequently in tunnels built in the 1960s compared to those in tunnels built in the 1930s.

Structural Performance Evaluation of Anchors for Power Equipment Electrical Cabinets Considering On-Site Installation Conditions (현장 설치 조건을 고려한 발전설비 전기 캐비닛 정착부 앵커의 구조성능 평가)

  • Lee, Sang-Moon;Jung, Woo-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.709-719
    • /
    • 2023
  • In general, most of the electrical equipment responsible for control within power plants is housed in self-standing cabinets. These cabinets are typically fixed to a slab using post-installed anchors. Although the fixation method of using post-installed anchors provides stability, there is a risk of conductor failure due to external forces, including moments. However, the performance assessment of current anchors is only evaluated through uniaxial material tests. Therefore, the primary purpose of this study is to compare the static performance of post-installed anchors, considering on-site installation conditions, with their performance in material tests and to analyze the behavioral characteristics of the anchors. While conducting experiments using actual cabinets would be ideal, practical and spatial constraints make this approach difficult. As an alternative, experiments were conducted using a test specimen consisting of a steel column and a support. As a result, the pull-out performance of anchors reflecting on-site installation conditions was measured to be about 10% higher than that observed in material tests. The trends in load reduction and the point of maximum performance for the anchors also differed. To verify the reliability of the experimental study, a 3D FEM analysis was performed, which will provide predictive information on the loads transferred to the post-installed anchors for structural performance evaluations of electrical cabinets using shaking table test in the future.