• 제목/요약/키워드: Structural Nonlinearity

검색결과 430건 처리시간 0.018초

PC 박스거더교량의 시공단계별 비선형 해석 및 후처리 기법 (Nonlinear Analysis of the Segmentally Erected Prestressed Concrete Box-Girder Bridges and Post-Processing)

  • 오병환;강영진;이형준;이명규;홍기증;김영진;임선택
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.368-373
    • /
    • 1994
  • Recently, a large number of box girder bridges with cantilevered decks have been constructed. Especially, segmentally erected prestressed concrete box girder bridges are widely used as economic and aesthetic solutions for long span bridges. Segmental erection is a particularly attractive construction alternative in cases where continuously supported formwork is impractical or uneconomical. In segmentally erected bridges, the structural systems are changed as the construction stages are progressive and redistribution of member forces occurs due to time dependent effects of concrete and relaxation of prestressing steel. Then, in segmentally erected bridges, analysis are required at each construction states. In this study, nonlinear analysis progam of the segmentally erected prestressed concrete box girder bridges is developed in taking into account nonlinearity of material and geometry, time dependent effect of concrete and relaxation of prestressing steel.

  • PDF

Nonlinear analysis of RC beams based on simplified moment-curvature relation considering fixed-end rotation

  • Kim, Sun-Pil
    • Computers and Concrete
    • /
    • 제4권6호
    • /
    • pp.457-475
    • /
    • 2007
  • A simple analytical procedure to analyze reinforced concrete (RC) beams with cracked section is proposed on the basis of the simplified moment-curvature relations of RC sections. Unlike previous analytical models which result in overestimation of stiffness and underestimation of structural deformations induced from assuming perfect-bond condition between steel and concrete, the proposed analytical procedure considers fixed-end rotation caused by anchorage. Furthermore, the proposed analytical procedure, compared with previous numerical models, promotes effectiveness of analysis by reflecting several factors which can influence nonlinearity of RC structure into the simplified moment-curvature relation. Finally, correlation studies between analytical and experimental results are conducted to establish the applicability of the proposed analytical procedure to the nonlinear analysis of RC structures.

Inelastic transient analysis of piles in nonhomogeneous soil

  • Kucukarslan, S.;Banerjee, P.K.
    • Structural Engineering and Mechanics
    • /
    • 제26권5호
    • /
    • pp.545-556
    • /
    • 2007
  • In this paper, a hybrid boundary element technique is implemented to analyze nonlinear transient pile soil interaction in Gibson type nonhomeogenous soil. Inelastic modeling of soil media is presented by introducing a rational approximation to the continuum with nonlinear interface springs along the piles. Modified $\ddot{O}$zdemir's nonlinear model is implemented and systems of equations are coupled at interfaces for piles and pile groups. Linear beam column finite elements are used to model the piles and the resulting governing equations are solved using an implicit integration scheme. By enforcing displacement equilibrium conditions at each time step, a system of equations is generated which yields the solution. A numerical example is performed to investigate the effects of nonlinearity on the pile soil interaction.

Underwater explosion and its effects on nonlinear behavior of an arch dam

  • Moradi, Melika;Aghajanzadeh, Seyyed Meisam;Mirzabozorg, Hasan;Alimohammadi, Mahsa
    • Coupled systems mechanics
    • /
    • 제7권3호
    • /
    • pp.333-351
    • /
    • 2018
  • In the present paper, the behavior of the Karaj double curvature arch dam is studied focusing on the effects of structural nonlinearity on the responses of the dam body when an underwater explosion occurred in the reservoir medium. The explosive sources are located at different distances from the dam and the effects of the cavitation and the initial shock wave of the explosion are considered. Different amount of TNT are considered. Two different linear and nonlinear behavior are assumed in the analysis and the dam body is assumed with and without contraction joints. Radial, tangential and vertical displacements of the dam crest are obtained. Moreover, maximum and minimum principal stress distributions are plotted. Based on the results, the dam body responses are sensitive to the insertion of joints and constitutive model considered for the dam body.

Nonlinear impact of negative stiffness dampers on stay cables

  • Shi, Xiang;Zhu, Songye
    • Structural Monitoring and Maintenance
    • /
    • 제5권1호
    • /
    • pp.15-38
    • /
    • 2018
  • Negative stiffness dampers (NSDs) have been proven an efficient solution to vibration control of stay cables. Although previous studies usually assumed a linear negative stiffness behavior of NSDs, many negative stiffness devices produce negative stiffness with nonlinear behavior. This paper systematically evaluates the impact of nonlinearity in negative stiffness on vibration control performance for stay cables. A linearization method based on energy equivalent principle is proposed, and subsequently, the impact of two types of nonlinear stiffness, namely, displacement hardening and softening stiffness, is evaluated. Through the Hilbert transform (HT) of free vibration responses, the effects of nonlinear stiffness of an NSD on the modal frequencies, damping ratios and frequency response functions of a stay cable is also investigated. The HT analysis results validate the accuracy of the linearization method.

Large amplitude forced vibration of functionally graded nano-composite plate with piezoelectric layers resting on nonlinear elastic foundation

  • Yazdi, Ali A.
    • Structural Engineering and Mechanics
    • /
    • 제68권2호
    • /
    • pp.203-213
    • /
    • 2018
  • This paper presents a study of geometric nonlinear forced vibration of carbon nano-tubes (CNTs) reinforcement composite plates on nonlinear elastic foundations. The plate is bonded with piezoelectric layers. The von Karman geometric nonlinearity assumptions with classical plate theory are employed to obtain the governing equations. The Galerkin and homotopy perturbation method (HPM) are utilized to investigate the effect of carbon nano-tubes volume fractions, large amplitude vibrations, elastic foundation parameters, piezoelectric applied voltage on frequency ratio and primary resonance. The results indicate that the carbon nano-tube volume fraction, applied voltage and elastic foundation parameters have significant effect on the hardening response of carbon nanotubes reinforced composite (CNTRC) plates.

Advanced inelastic static (pushover) analysis for earthquake applications

  • Elnashai, A.S.
    • Structural Engineering and Mechanics
    • /
    • 제12권1호
    • /
    • pp.51-69
    • /
    • 2001
  • Whereas the potential of static inelastic analysis methods is recognised in earthquake design and assessment, especially in contrast with elastic analysis under scaled forces, they have inherent shortcomings. In this paper, critical issues in the application of inelastic static (pushover) analysis are discussed and their effect on the obtained results appraised. Areas of possible developments that would render the method more applicable to the prediction of dynamic response are explored. New developments towards a fully adaptive pushover method accounting for spread of inelasticity, geometric nonlinearity, full multi-modal, spectral amplification and period elongation, within a framework of fibre modelling of materials, are discussed and preliminary results are given. These developments lead to static analysis results that are closer than ever to inelastic time-history analysis. It is concluded that there is great scope for improvements of this simple and powerful technique that would increase confidence in its employment as the primary tool for seismic analysis in practice.

Direct implementation of stochastic linearization for SDOF systems with general hysteresis

  • Dobson, S.;Noori, M.;Hou, Z.;Dimentberg, M.
    • Structural Engineering and Mechanics
    • /
    • 제6권5호
    • /
    • pp.473-484
    • /
    • 1998
  • The first and second moments of response variables for SDOF systems with hysteretic nonlinearity are obtained by a direct linearization procedure. This adaptation in the implementation of well-known statistical linearization methods, provides concise, model-independent linearization coefficients that are well-suited for numerical solution. The method may be applied to systems which incorporate any hysteresis model governed by a differential constitutive equation, and may be used for zero or non-zero mean random vibration. The implementation eliminates the effort of analytically deriving specific linearization coefficients for new hysteresis models. In doing so, the procedure of stochastic analysis is made independent from the task of physical modeling of hysteretic systems. In this study, systems with three different hysteresis models are analyzed under various zero and non-zero mean Gaussian White noise inputs. Results are shown to be in agreement with previous linearization studies and Monte Carlo Simulation.

A simplified procedure to incorporate soil non-linearity in missile penetration problems

  • Siddiqui, N.A.;Kumar, S.;Khan, M.A.;Abbas, H.
    • Structural Engineering and Mechanics
    • /
    • 제23권3호
    • /
    • pp.249-262
    • /
    • 2006
  • In this paper, a simplified mathematical procedure is presented to incorporate nonlinearity in soil material to predict the deceleration time history, penetration depth and other relevant parameters for normal impact of missiles into soil targets. Numerical method is employed for these predictions. The results of the study are compared with experimental observations and predictions available in the literature. A good agreement is found with experimental observations and an improvement is observed with existing predictions. A comparison is also made with linear soil model. Some parametric studies are also carried out to obtain the results of practical interest.

Dynamic contact response of a finite beam on a tensionless Pasternak foundation under symmetric and asymmetric loading

  • Coskun, Irfan
    • Structural Engineering and Mechanics
    • /
    • 제34권3호
    • /
    • pp.319-334
    • /
    • 2010
  • The dynamic response of a finite Bernoulli-Euler beam resting on a tensionless Pasternak foundation and subjected to a concentrated harmonic load is investigated in this study. This load may be applied at the center of the beam, or it may be offset from the center. Since the elastic foundation is assumed to be tensionless, the beam may lift off the foundation, resulting in contact and non-contact regions in the system. An analytical/numerical solution is obtained from the governing equations of the contact and non-contact regions to determine the coordinates of the lift-off points. Although there is no nonlinear term in the equations, the problem appears to be nonlinear since the contact regions are not known in advance. Due to that nonlinearity, the essentials of the problem (the coordinates of the lift-off points) are calculated numerically using the Newton-Raphson technique. The results, which represent the symmetric and asymmetric responses of the beam, are presented graphically in this work. They illustrate the effects of the forcing frequency and the beam length on the extent of the contact regions and displacements.