• 제목/요약/키워드: Structural Health Monitoring System

Search Result 501, Processing Time 0.025 seconds

Structural Damage Monitoring of Harbor Caissons with Interlocking Condition

  • Huynh, Thanh-Canh;Lee, So-Young;Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.678-685
    • /
    • 2012
  • The objective of this study is to monitor the health status of harbor caissons which have potential foundation damage. To obtain the objective, the following approaches are performed. Firstly, a structural damage monitoring(SDM) method is designed for interlocked multiple-caisson structures. The SDM method utilizes the change in modal strain energy to monitor the foundation damage in a target caisson unit. Secondly, a finite element model of a caisson system which consists of three caisson units is established to verify the feasibility of the proposed method. In the finite element simulation, the caisson units are constrained each other by shear-key connections. The health status of the caisson system against various levels of foundation damage is monitored by measuring relative modal displacements between the adjacent caissons.

RECENT R&D ACTIVITIES ON STRUCTURAL HEALTH MONITORING FOR CIVIL INFRA-STRUCTURES IN KOREA

  • Yun, Chung-Bang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.21-32
    • /
    • 2003
  • Developments and applications of the structural health monitoring (SHM) systems have become active particularity for long-span bridges in Korea. They are composed of sensors, data acquisition system, data transmission system, information processing, damage assessment, and information management. In this paper, current status of research and application activities on SHM systems for civil infra-structures in Korea are briefly introduced by 4 parts: (1) current status of bridge monitoring systems on existing and newly constructed bridges, (2) research and development activities on smart sensors such as optical fiber sensors and piezo-electric sensors, (3) structural damage detection methods using measured data, and (4) a test road project for pavement design verification and enhancement by the Korea Highway Corporation. Finally the R&D activities of a new engineering research center entitled Smart Infra-Structure Technology Center at Korea Advanced Institute of Science and Technology are also briefly described.

  • PDF

Health monitoring of pressurized pipelines by finite element method using meta-heuristic algorithms along with error sensitivity assessment

  • Amirmohammad Jahan;Mahdi Mollazadeh;Abolfazl Akbarpour;Mohsen Khatibinia
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.211-219
    • /
    • 2023
  • The structural health of a pipeline is usually assessed by visual inspection. In addition to the fact that this method is expensive and time consuming, inspection of the whole structure is not possible due to limited access to some points. Therefore, adopting a damage detection method without the mentioned limitations is important in order to increase the safety of the structure. In recent years, vibration-based methods have been used to detect damage. These methods detect structural defects based on the fact that the dynamic responses of the structure will change due to damage existence. Therefore, the location and extent of damage, before and after the damage, are determined. In this study, fuzzy genetic algorithm has been used to monitor the structural health of the pipeline to create a fuzzy automated system and all kinds of possible failure scenarios that can occur for the structure. For this purpose, the results of an experimental model have been used. Its numerical model is generated in ABAQUS software and the results of the analysis are used in the fuzzy genetic algorithm. Results show that the system is more accurate in detecting high-intensity damages, and the use of higher frequency modes helps to increase accuracy. Moreover, the system considers the damage in symmetric regions with the same degree of membership. To deal with the uncertainties, some error values are added, which are observed to be negligible up to 10% of the error.

Optimal sensor placement techniques for system identification and health monitoring of civil structures

  • Rao, A. Rama Mohan;Anandakumar, Ganesh
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.465-492
    • /
    • 2008
  • Proper pretest planning is a vital component of any successful vibration test on engineering structures. The most important issue in dynamic testing of many engineering structures is arriving at the number and optimal placement of sensors. The sensors must be placed on the structure in such a way that all the important dynamic behaviour of a structural system is captured during the course of the test with sufficient accuracy so that the information can be effectively utilised for structural parameter identification or health monitoring. Several optimal sensor placement (OSP) techniques are proposed in the literature and each of these methods have been evaluated with respect to a specific problem encountered in various engineering disciplines like aerospace, civil, mechanical engineering, etc. In the present work, we propose to perform a detailed characteristic evaluation of some selective popular OSP techniques with respect to their application to practical civil engineering problems. Numerical experiments carried out in the paper on various practical civil engineering structures indicate that effective independence (EFI) method is more consistent when compared to all other sensor placement techniques.

Health Monitoring System of Large Civil Structural System Based on Local Wireless Communication System (근거리 무선통신을 이용한 대형토목구조물의 모니터링시스템)

  • Heo, Gwanghee;Choi, Man-Yong;Kim, Chi-Yup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.4
    • /
    • pp.199-204
    • /
    • 1999
  • The continuing development of the sensors for the measurement of the safety of structures has been making a turning point in measuring and evaluating the larger civil structural system as well. However, there are still remaining problems to be solved for the extremely large structure because the natural damages of those structures are not so simple to be monitored for the reason of their locational and structural conditions. One of the most significant problems is that a number of cables which connect the measuring system to the analyzer are liable to distort actual data. This paper presents a new monitoring system for large structures by means of a local wireless communication technique which would eliminate the possibility of the distortion of data by noise in cables. This new monitoring system employs the wireless system and the software for data communication, along with the strain sensor and accelerometers which have been already used in the past. It makes it possible for the data, which have been chosen by the central controling system from the various sensors placed in the large civil structures, to be wirelessly delivered and then analyzed and evaluated by decision making system of the structures.

  • PDF

Buffeting-induced stresses in a long suspension bridge: structural health monitoring oriented stress analysis

  • Liu, T.T.;Xu, Y.L.;Zhang, W.S.;Wong, K.Y.;Zhou, H.J.;Chan, K.W.Y.
    • Wind and Structures
    • /
    • v.12 no.6
    • /
    • pp.479-504
    • /
    • 2009
  • Structural health monitoring (SHM) systems have been recently embraced in long span cable-supported bridges, in which buffeting-induced stress monitoring is one of the tasks to ensure the safety of the bridge under strong winds. In line with this task, this paper presents a SHM-oriented finite element model (FEM) for the Tsing Ma suspension bridge in Hong Kong so that stresses/strains in important bridge components can be directly computed and compared with measured ones. A numerical procedure for buffeting induced stress analysis of the bridge based on the established FEM is then presented. Significant improvements of the present procedure are that the effects of the spatial distribution of both buffeting forces and self-excited forces on the bridge deck structure are taken into account and the local structural behaviour linked to strain/stress, which is prone to cause local damage, are estimated directly. The field measurement data including wind, acceleration and stress recorded by the wind and structural health monitoring system (WASHMS) installed on the bridge during Typhoon York are analyzed and compared with the numerical results. The results show that the proposed procedure has advantages over the typical equivalent beam finite element models.

Applications of fiber optic sensors for structural health monitoring

  • Kesavan, K.;Ravisankar, K.;Parivallal, S.;Sreeshylam, P.
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.355-368
    • /
    • 2005
  • Large and complex structures are being built now-a-days and, they are required to be functional even under extreme loading and environmental conditions. In order to meet the safety and maintenance demands, there is a need to build sensors integrated structural system, which can sense and provide necessary information about the structural response to complex loading and environment. Sophisticated tools have been developed for the design and construction of civil engineering structures. However, very little has been accomplished in the area of monitoring and rehabilitation. The employment of appropriate sensor is therefore crucial, and efforts must be directed towards non-destructive testing techniques that remain functional throughout the life of the structure. Fiber optic sensors are emerging as a superior non-destructive tool for evaluating the health of civil engineering structures. Flexibility, small in size and corrosion resistance of optical fibers allow them to be directly embedded in concrete structures. The inherent advantages of fiber optic sensors over conventional sensors include high resolution, ability to work in difficult environment, immunity from electromagnetic interference, large band width of signal, low noise and high sensitivity. This paper brings out the potential and current status of technology of fiber optic sensors for civil engineering applications. The importance of employing fiber optic sensors for health monitoring of civil engineering structures has been highlighted. Details of laboratory studies carried out on fiber optic strain sensors to assess their suitability for civil engineering applications are also covered.

Evaluation of Structural Performance of Self-anchored Suspension Bridge Using Bridge Health Monitoring System (계측모니터링 시스템을 활용한 자정식 현수교의 구조성능 평가)

  • Kim, Jeong-Hoon;Song, Jae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.189-198
    • /
    • 2009
  • In this paper, the performance of bridge health monitoring system(BHMS) installed in suspension bridge was tested and the field loading tests have been done by using BHMS to get quantitative results on the response of bridge. Before the field tests, globally structural analysis was performed to verify and estimate the test results and the static and dynamic field loading tests were carried out. Depending on comparison with results of field tests and structural analysis, field tests results were evaluated as 30%~50% less than structural analysis results, so it was confirmed that the bridge has excellent structural performance. Therefore field test results were measured within an acceptable error range, so it is verified that the BHMS in the bridge has been reliable and efficient.

Movement identification model of port container crane based on structural health monitoring system

  • Kaloop, Mosbeh R.;Sayed, Mohamed A.;Kim, Dookie;Kim, Eunsung
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.105-119
    • /
    • 2014
  • This study presents a steel container crane movement analysis and assessment based on structural health monitoring (SHM). The accelerometers are used to monitor the dynamic crane behavior and a 3-D finite element model (FEM) was designed to express the static displacement of the crane under the different load cases. The multi-input single-output nonlinear autoregressive neural network with external input (NNARX) model is used to identify the crane dynamic displacements. The FEM analysis and the identification model are used to investigate the safety and the vibration state of the crane in both time and frequency domains. Moreover, the SHM system is used based on the FEM analysis to assess the crane behavior. The analysis results indicate that: (1) the mean relative dynamic displacement can reveal the relative static movement of structures under environmental load; (2) the environmental load conditions clearly affect the crane deformations in different load cases; (3) the crane deformations are shown within the safe limits under different loads.

Bridge safety monitoring based-GPS technique: case study Zhujiang Huangpu Bridge

  • Kaloop, Mosbeh R.
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.473-487
    • /
    • 2012
  • GPS has become an established technique in structural health monitoring. This paper presents the application of an on-line GPS RTK system on the Zhujiang Huangpu Bridge (China) for monitoring bridge deck and towers movements. In this study, both the form and functions of movements of the deck and towers of the bridge under affecting loads were monitored in lateral, longitudinal and vertical directions. Such movements were described in time and frequency domains by determining the trend, torsion, periodical of the series using probability density function (PDF). The results of the time series GPS data are practical and useful to bridge health monitoring.