• Title/Summary/Keyword: Structural Gravity Model

Search Result 106, Processing Time 0.024 seconds

Structural identification of gravity-type caisson structure via vibration feature analysis

  • Lee, So-Young;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.259-281
    • /
    • 2015
  • In this study, a structural identification method is proposed to assess the integrity of gravity-type caisson structures by analyzing vibration features. To achieve the objective, the following approaches are implemented. Firstly, a simplified structural model with a few degrees-of-freedom (DOFs) is formulated to represent the gravity-type caisson structure that corresponds to the sensors' DOFs. Secondly, a structural identification algorithm based on the use of vibration characteristics of the limited DOFs is formulated to fine-tune stiffness and damping parameters of the structural model. Finally, experimental evaluation is performed on a lab-scaled gravity-type caisson structure in a 2-D wave flume. For three structural states including an undamaged reference, a water-level change case, and a foundation-damage case, their corresponding structural integrities are assessed by identifying structural parameters of the three states by fine-tuning frequency response functions, natural frequencies and damping factors.

Improving the linear flexibility distribution model to simultaneously account for gravity and lateral loads

  • Habibi, AliReza;Izadpanah, Mehdi
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.11-22
    • /
    • 2017
  • There are two methods to model the plastification of members comprising lumped and distributed plasticity. When a reinforced concrete member experiences inelastic deformations, cracks tend to spread from the joint interface resulting in a curvature distribution; therefore, the lumped plasticity methods assuming plasticity is concentrated at a zero-length plastic hinge section at the ends of the elements, cannot model the actual behavior of reinforced concrete members. Some spread plasticity models including uniform, linear and recently power have been developed to take extended inelastic zone into account. In the aforementioned models, the extended inelastic zones in proximity of critical sections assumed close to connections are considered. Although the mentioned assumption is proper for the buildings simply imposed lateral loads, it is not appropriate for the gravity load effects. The gravity load effects can influence the inelastic zones in structural elements; therefore, the plasticity models presenting the flexibility distribution along the member merely based on lateral loads apart from the gravity load effects can bring about incorrect stiffness matrix for structure. In this study, the linear flexibility distribution model is improved to account for the distributed plasticity of members subjected to both gravity and lateral load effects. To do so, a new model in which, each member is taken as one structural element into account is proposed. Some numerical examples from previous studies are assessed and outcomes confirm the accuracy of proposed model. Also comparing the results of the proposed model with other spread plasticity models illustrates glaring error produced due to neglecting the gravity load effects.

Using the pendulum column as an isolator by reducing the gravity effect

  • Abdallah Azizi;Majid Barghian
    • Earthquakes and Structures
    • /
    • v.25 no.4
    • /
    • pp.297-305
    • /
    • 2023
  • The conventional method of structural seismic design was based on increasing structural capacity, which usually didn't reduce earthquake seismic effects. By changing the philosophy of structure design, technologies such as passive seismic control have been used in structures. So far, a large number of seismic isolation systems have been introduced to dissipate earthquake energy that is applied to a structure. These systems act against earthquakes rather than increasing the strength and capacity of the structure. In the present paper, a suspended column called a "pendulum column" is investigated, and a new idea has been considered to improve the performance of the pendulum column isolator by changing the gravity effect by adding a spring under the isolator system. The behavior of the studied isolator system has been researched. Then the isolator system was investigated under different earthquakes and compared with a common pendulum column isolator. The results show that changing the gravity effect has an effective role in the response of the system by reducing the system stiffness. Equations for the system showed that even in a special state, complete isolation is possible. Finally, the tested model verified the theory.

Structural response of concrete gravity dams under blast loads

  • Sevim, Baris;Toy, Ahmet Tugrul
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.503-510
    • /
    • 2020
  • Concrete dams are important structures due to retaining amount of water on their reservoir. So such kind of structures have to be designed against static and dynamic loads. Especially considering on critical importance against blasting threats and environmental safety, dams have to be examined according to the blast loads. This paper aims to investigate structural response of concrete gravity dams under blast loads. For the purpose Sarıyar Concrete Gravity Dam in Turkey is selected for numerical application with its 85 m of reservoir height (H), 255 m of reservoir length (3H), 72 m of bottom and 7 m of top widths. In the study, firstly 3D finite element model of the dam is constituted using ANSYS Workbench software considering dam-reservoir-foundation interaction and a hydrostatic analysis is performed without blast loads. Then, nearly 13 tons TNT explosive are considered 20 m away from downstream of the dam and this is modeled using ANSYS AUTODYN software. After that explicit analyses are performed through 40 milliseconds. Lastly peak pressures obtained from analyses are compared to empirical equations in the literature and UFC 3-340-02 standard which provide unified facilities criteria for structures to resist the effects of accidental explosions. Also analyses' results such as displacements, stresses and strains obtained from both hydrostatic and blasting analysis models are compared to each other. It is highlighted from the study that blasting analysis model has more effective than the only hydrostatic analysis model. So it is highlighted from the study that the design of dams should be included the blast loads.

Vibration Analysis of the Moving Plates Subjected to the Force of Gravity

  • Jooyong Cho;Kim, Doyeon;Lee, Usik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.3-10
    • /
    • 2003
  • The use of frequency-dependent dynamic stiffness matrix (or spectral element matrix) in structural dynamics may provide very accurate solutions, while it reduces the number of degrees-of-freedom to improve the computational efficiency and cost problems. Thus, this paper develops a spectral element model for the thin plates moving with constant speed under uniform in-plane tension and gravity. The concept of Kantorovich method and the principle of virtual displacement is used in the frequency-domain to formulate the dynamic stiffness matrix. The present spectral element model is evaluated by comparing its solutions with the exact analytical solutions. The effects of moving speed, in-plane tension and gravity on the natural frequencies of the plate are numerically investigated.

  • PDF

Physical modelling of sliding failure of concrete gravity dam under overloading condition

  • Zhu, Hong-Hu;Yin, Jian-Hua;Dong, Jian-Hua;Zhang, Lin
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.89-106
    • /
    • 2010
  • Sliding within the dam foundation is one of the key failure modes of a gravity dam. A two-dimensional (2-D) physical model test has been conducted to study the sliding failure of a concrete gravity dam under overloading conditions. This model dam was instrumented with strain rosettes, linear variable displacement transformers (LVDTs), and embedded fiber Bragg grating (FBG) sensing bars. The surface and internal displacements of the dam structure and the strain distributions on the dam body were measured with high accuracy. The setup of the model with instrumentation is described and the monitoring data are presented and analyzed in this paper. The deformation process and failure mechanism of dam sliding within the rock foundation are investigated based on the test results. It is found that the horizontal displacements at the toe and heel indicate the dam stability condition. During overloading, the cracking zone in the foundation can be simplified as a triangle with gradually increased height and vertex angle.

Technological Innovation and Political Stability: A Geographic Distribution of Green Trade in OIC Nations

  • Shamsa KANWAL;Irwan Shah Zainal ABIDIN;Rabiul ISLAM
    • Journal of Distribution Science
    • /
    • v.22 no.8
    • /
    • pp.37-53
    • /
    • 2024
  • Purpose: Global warming is increasingly aggravated by environmental degradation, a challenge that can be mitigated through strategic logistic policies. This study introduces the dynamics of green trade in environmental goods for the Organisation of Islamic Cooperation (OIC) nations. It is a region known for its high environmental degradation, political risk and instability. This study examines how technological innovation and political factors influence the geographic distribution of green trade among OIC nations from 1994 to 2021 using the structural gravity model. The COVID-19 pandemic further emphasised the need for resilient and eco-friendly approaches. Research design, data and methodology: The main objective of the study is to analyse the impact of technological innovation along with scrutinising political determinants of green trade in the OIC region from 1994 to 2021 using the structural gravity model. Results: The results reveal geographic proximity, RTA, and innovation significantly boost green trade. Similarly, OIC's green trade performance has been impeded by high political risk and instability. Conclusions: The research recommends fostering political stability, and conducting further research using longitudinal studies and machine learning to strengthen the understanding of innovation and green trade in the OIC. This will inform policies for sustainable economic growth through green trade.

Seismic Damage Analysis Of Concrete Gravity Dam Using ABAQUS (ABAQUS 소프트웨어를 이용한 콘크리트 중력댐의 지진손상해석)

  • Shin, Dong-Hoon;Nghia, Nguyen Trong;Park, Han-Gyu;Park, Kyung-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.530-533
    • /
    • 2009
  • This study deals with 2D and 3D nonlinear seismic damage analysis of a concrete gravity dam using the finite element program ABAQUS and the concrete damaged plasticity model. 2D and 3D spillway sections of the dam are simulated. First the frequency analysis is conducted to compare the fundamental frequency and estimate the value of damping coefficient. Then the seismic analysis is conducted using the simulated ground acceleration motion. The relative displacement between the crest and bottom of the dam is obtained and compared for the maximum value and occurrence time. The results indicate that the plane-stress assumption gives similar results of maximum relative displacement and final damage distribution with 3D analysis.

  • PDF

Effect of gravity on a micropolar thermoelastic medium with voids under three-phase-lag model

  • Alharbi, Amnah M.;Othman, Mohamed I.A.;Al-Autabi, Al-Anoud M.Kh.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.579-590
    • /
    • 2020
  • This paper's objective is to investigate the effect of gravity on a micropolar thermoelastic medium with voids. The problem is assessed according to the three-phase-lag model. An analysis of the resulting non-dimensional displacement, temperature variation, and internal stress of the study material is carried out and presented graphically. The non-dimensional displacement, temperature, micro-rotation, the change in the volume fraction field and stress of the material are obtained and illustrated graphically. Comparisons are made with the results predicted by different theories for different values of gravity, the phase-lag of the heat flux and the phase-lag of the temperature gradient. The numerical results reveal that gravity and relaxation times have a significant influence on the distribution of the field quantities. Some notable insights of interest are deduced from the investigation.

Effect of biaxial stress state on seismic fragility of concrete gravity dams

  • Sen, Ufuk;Okeil, Ayman M.
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.285-296
    • /
    • 2020
  • Dams are important structures for management of water supply for irrigation or drinking, flood control, and electricity generation. In seismic regions, the structural safety of concrete gravity dams is important due to the high potential of life and economic loss if they fail. Therefore, the seismic analysis of existing dams in seismically active regions is crucial for predicting responses of dams to ground motions. In this paper, earthquake response of concrete gravity dams is investigated using the finite element (FE) method. The FE model accounts for dam-water-foundation rock interaction by considering compressible water, flexible foundation effects, and absorptive reservoir bottom materials. Several uncertainties regarding structural attributes of the dam and external actions are considered to obtain the fragility curves of the dam-water-foundation rock system. The structural uncertainties are sampled using the Latin Hypercube Sampling method. The Pine Flat Dam in the Central Valley of Fresno County, California, is selected to demonstrate the methodology for several limit states. The fragility curves for base sliding, and excessive deformation limit states are obtained by performing non-linear time history analyses. Tensile cracking including the complex state of stress that occurs in dams was also considered. Normal, Log-Normal and Weibull distribution types are considered as possible fits for fragility curves. It was found that the effect of the minimum principal stress on tensile strength is insignificant. It is also found that the probability of failure of tensile cracking is higher than that for base sliding of the dam. Furthermore, the loss of reservoir control is unlikely for a moderate earthquake.