• Title/Summary/Keyword: Structural Damping

Search Result 1,217, Processing Time 0.041 seconds

A Study of Rayleigh Damping Effect on Dynamic Crack Propagation Analysis using MLS Difference Method (MLS 차분법을 활용한 동적 균열전파해석의 Rayleigh 감쇠영향 분석)

  • Kim, Kyeong-Hwan;Lee, Sang-Ho;Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.583-590
    • /
    • 2016
  • This paper presents a dynamic crack propagation algorithm with Rayleigh damping effect based on the MLS(Moving Least Squares) Difference Method. Dynamic equilibrium equation and constitutive equation are derived by considering Rayliegh damping and governing equations are discretized by the MLS derivative approximation; the proportional damping, which has not been properly treated in the conventional strong formulations, was implemented in both the equilibrium equation and constitutive equation. Dynamic equilibrium equation including time relevant terms is integrated by the Central Difference Method and the discrete equations are simplified by lagging the velocity one step behind. A geometrical feature of crack is modeled by imposing the traction-free condition onto the nodes placed at crack surfaces and the effect of movement and addition of the nodes at every time step due to crack growth is appropriately reflected on the construction of total system. The robustness of the proposed numerical algorithm was proved by simulating single and multiple crack growth problems and the effect of proportional damping on the dynamic crack propagation analysis was effectively demonstrated.

Vibration Control Effect of the Framed Building Structures according to the Stiffness Ratio of Exo-type Damping System and Damper Device Yield Ratio (Exo-type 감쇠시스템의 강성비와 감쇠장치의 항복비에 따른 라멘조 건물의 제진효과)

  • Hur, Moo-Won;Lee, Sang-Hyun;Chun, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.38-44
    • /
    • 2015
  • In this paper, the vibration control effect of the Exo-type damping system was investigated by applying the Kagome dampers to 15-story and 20-story frame structure apartment. A new Exo-type damping system composed of the dampers and supporting column was proposed in the previous work and numerical analysis were performed to investigate the effects of optimum stiffness ratio between controlled structure and supporting column, the size of damper and yield ratio of the damper. The numerical analysis results of a structure with Exo-type damping system up to the third story showed that the stiffness ratio should be higher than 7.0 and the damper device yield ratio be at least 8.0% ($V_{damper}/V_{base\;shear$) to effectively reduce the base shear and the maximum drift of the uppermost story. When the Exo-type damping system was installed up to the fifth story, the stiffness ratio should be higher than 2.5 and damper device yield ratio needs to be at least 3.5% ($V_{damper}/V_{base\;shear$) for obtaining the target performance.

A Study of Dynamic Behavior of Segmental U-shaped Prestressed Concrete Girder Applied with Integrated Tensioning Systems (복합긴장방식이 적용된 세그멘탈 U형 거더 동적 거동 특성 연구)

  • Hyunock Jang;Ilyoung Jang
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.369-378
    • /
    • 2024
  • Purpose: This study aims to verify structural stability by manufacturing a 40m full-scale specimen composed of a segmental U-shaped PSC girder with integrated tensioning systems and a concrete slab, proceeding dynamic behavior tests, and compare the results of the tests with the results of numerical analysis. Method: Dynamic behavior tests were conducted on a full-scale, undamaged specimen using an impact hammer, and the natural frequency and damping ratio were measured and compared with numerical analysis techniques and the general damping ratio of the facilities. Result: The natural frequency of the numerical analysis model consisting of a girder and slab composite section was calculated to be 2.561Hz, the natural frequency of the full-scale specimen was measured to be 2.670Hz, and the damping ratio was calculated to be 0.42~0.68%. Conclusion: The natural frequency of the full-scale specimen was found to be 4.3% larger than that of the numerical analysis model. Since the masses of the full-scale specimen and the numerical analysis model are the same as 99.97%, it can be derived that the stiffness of the full-scale specimen has secured structural safety and stability. As a result, the dynamic behavior stability of the specimen was verified. The measured damping ratio of 0.42~0.68% was found to be a stable dynamic behavior compared to the PSC structures damping ratio of 0.5~1.0% in the elastic region.

Transverse vibration reduction at navigation bridge deck of the shuttle tanker using structural intensity analysis (진동 인텐시티 해석을 통한 원유운반선의 거주구 횡방향 진동 저감 연구)

  • Kim, Ki-Sun;Kim, Heui-Won;Joo, Won-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.251-255
    • /
    • 2012
  • Structural intensity has been mainly utilized to identify vibration energy flow in a vessel. In this paper, the structural intensity of a shuttle tanker subjected to H-moment of the main engine was calculated using a finite element model. From the analysis, it was found that the top-bracing elements, which support the main engine onto the hull structure to prevent the excessive transverse vibration of the main engine, play the role of the dominant path and sink for vibration energy flow from the main engine. Therefore, the structural intensity was controlled by the modification of stiffness and damping characteristics of the top-bracing elements. As a result, it is observed that the transverse vibration level at the center of navigation bridge deck decreased after the control of structural intensity.

  • PDF

MOGA-Based Structural Design Method for Diagrid Structural Control System Subjected to Wind and Earthquake Loads

  • Kim, Hyun-Su;Kang, Joo-Won
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1598-1606
    • /
    • 2018
  • An integrated optimal structural design method for a diagrid structure and control device was developed. A multi-objective genetic algorithm was used and a 60-story diagrid building structure was developed as an example structure. Artificial wind and earthquake loads were generated to assess the wind-induced and seismic responses. A smart tuned mass damper (TMD) was used as a structural control system and an MR (magnetorheological) damper was employed to develop a smart TMD (STMD). The multi-objective genetic algorithm used five objectives including a reduction of the dynamic responses, additional stiffness and damping, mass of STMD, capacity of the MR damper for the integrated optimization of a diagrid structure and a STMD. From the proposed method, integrated optimal designs for the diagrid structure and STMD were obtained. The numerical simulation also showed that the STMD provided good control performance for reducing the wind-induced and seismic responses of a tall diagrid building structure.

Seismic Behavior of Viscoelastically Damped Steel-Frame Structures (점탄성 감쇠기를 설치한 강구조건물의 지진하중에 대한 거동 연구)

  • 오순택
    • Computational Structural Engineering
    • /
    • v.6 no.1
    • /
    • pp.127-135
    • /
    • 1993
  • This paper summarizes a study on the application of viscoelastic dampers as an energy dissipation device in the frame structure. It can be concluded that, even at high temperatures, the viscoelastically damped structure can achieve a significant reduction of structural response as compared to the case with no dampers added. Empirical formulae for estimating the dynamic properties of the viscoelastic damper are established based on the regression analysis using data obtained from component tests of the damper. The structural damping with added dampers can be satisfactorily estimated by the modal strain energy method and the derived empirical formulae. Numerical simulations using conventional modal analysis methods are also carried out to predict the dynamic response of viscoelastically damped structures under seismic excitations. Comparison between numerical simulations and test results shows very good agreement. Based on the above studies, a design procedure for viscoelastically damped structures is present . This design procedure fits naturally into the conventional structural design flow-chart by including damping ratio an additional design parameter.

  • PDF

Analytical and experimental research on wind-induced vibration in high-rise buildings with tuned liquid column dampers

  • Liu, Ming-Yi;Chiang, Wei-Ling;Chu, Chia-Ren;Lin, Shih-Sheng
    • Wind and Structures
    • /
    • v.6 no.1
    • /
    • pp.71-90
    • /
    • 2003
  • In recent years, high-strength, light-weight materials have been widely used in the construction of high-rise buildings. Such structures generally have flexible, low-damping characteristics. Consequently, wind-induced oscillation greatly affects the structural safety and the comfort of the building's occupants. In this research, wind tunnel experiments were carried out to study the wind-induced vibration of a building with a tuned liquid column damper (TLCD). Then, a model for predicting the aerodynamic response in the across-wind direction was generated. Finally, a computing procedure was developed for the analytical modeling of the structural oscillation in a building with a TLCD under the wind load. The model agrees substantially with the experimental results. Therefore, it may be used to accurately calculate the structural response. Results from this investigation show that the TLCD is more advantageous for reducing the across-wind vibration than the along-wind oscillation. When the across-wind aerodynamic effects are considered, the TLCD more effectively controls the aerodynamic response. Moreover, it is also more useful in suppressing the acceleration than the displacement in biaxial directions. As s result, TLCDs are effective devices for reducing the wind-induced vibration in buildings. Parametric studies have also been conducted to evaluate the effectiveness of the TLCD in suppressing the structural oscillation. This study may help engineers to more correctly predict the aerodynamic response of high-rise buildings as well as select the most appropriate TLCDs for reducing the structural vibration under the wind load. It may also improve the understanding of wind-structure interactions and wind resistant designs for high-rise buildings.

A frequency tracking semi-active algorithm for control of edgewise vibrations in wind turbine blades

  • Arrigan, John;Huang, Chaojun;Staino, Andrea;Basu, Biswajit;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.177-201
    • /
    • 2014
  • With the increased size and flexibility of the tower and blades, structural vibrations are becoming a limiting factor towards the design of even larger and more powerful wind turbines. Research into the use of vibration mitigation devices in the turbine tower has been carried out but the use of dampers in the blades has yet to be investigated in detail. Mitigating vibrations will increase the design life and hence economic viability of the turbine blades and allow for continual operation with decreased downtime. The aim of this paper is to investigate the effectiveness of Semi-Active Tuned Mass Dampers (STMDs) in reducing the edgewise vibrations in the turbine blades. A frequency tracking algorithm based on the Short Time Fourier Transform (STFT) technique is used to tune the damper. A theoretical model has been developed to capture the dynamic behaviour of the blades including the coupling with the tower to accurately model the dynamics of the entire turbine structure. The resulting model consists of time dependent equations of motion and negative damping terms due to the coupling present in the system. The performances of the STMDs based vibration controller have been tested under different loading and operating conditions. Numerical analysis has shown that variation in certain parameters of the system, along with the time varying nature of the system matrices has led to the need for STMDs to allow for real-time tuning to the resonant frequencies of the system.

Review of seismic vibration control using 'smart materials'

  • Valliappan, S.;Qi, K.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.617-636
    • /
    • 2001
  • For the potential application of smart materials to seismic structural control, this paper reviews seismic control techniques for civil engineering structures, and developments of smart materials for vibration and noise control. Analytical and finite element methods adopted for the design of distributed sensors/actuators using piezoelectric materials are discussed. Investigation of optimum position of sensors/actuators and damping are also outlined.

Shaking Table Test of Rectangular Liquid Container with Base-Isolation System (사각형 면진유체저장조의 진동대실험)

  • 전영선;최인길
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.122-129
    • /
    • 1995
  • The seismic behavior of a rectangular liquid container with high damping laminated rubber bearing is investigated through the scaled model tests. The results are compared with those for non-isolated model, and those by analytical methods. It is shown that the optimum dynamic properties of isolation system can reduce the acceleration response in the superstructure significantly and prevent the amplification of sloshing height.

  • PDF