• 제목/요약/키워드: Structural Concrete

검색결과 7,023건 처리시간 0.033초

인장 보강재 및 거푸집으로 활용한 FRP 판과 타설 콘크리트 사이의 부착에 관한 실험적 연구 (Bond Slip Behavior of Cast-In-Place Concrete and FRP Plank Using Formwork and Tensile Reinforcement)

  • 유승운
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.309-312
    • /
    • 2006
  • An experimental study for bond slip behavior of concrete and a FRP plank was used as the both formwork and the tensile reinforcement for a concrete structural member is described. For the FRP plank and the concrete to act as a composite structural member a satisfactory bond at the interface between the smooth surface of the FRP and the concrete must be developed. This study focuses on investigation of the bond slip behavior of sand coated interface between FRP and cast-in-place concrete experimentally.

  • PDF

Constructability optimal design of reinforced concrete retaining walls using a multi-objective genetic algorithm

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Structural Engineering and Mechanics
    • /
    • 제47권2호
    • /
    • pp.227-245
    • /
    • 2013
  • The term "constructability" in regard to cast-in-place concrete construction refers mainly to the ease of reinforcing steel placement. Bar congestion complicates steel placement, hinders concrete placement and as a result leads to improper consolidation of concrete around bars affecting the integrity of the structure. In this paper, a multi-objective approach, based on the non-dominated sorting genetic algorithm (NSGA-II) is developed for optimal design of reinforced concrete cantilever retaining walls, considering minimization of the economic cost and reinforcing bar congestion as the objective functions. The structural model to be optimized involves 35 design variables, which define the geometry, the type of concrete grades, and the reinforcement used. The seismic response of the retaining walls is investigated using the well-known Mononobe-Okabe analysis method to define the dynamic lateral earth pressure. The results obtained from numerical application of the proposed framework demonstrate its capabilities in solving the present multi-objective optimization problem.

콘크리트 크리프의 확률론적 거동 해석 (The Analysis of Statistical Behavior in Concrete Creep)

  • 김두환;박종철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.237-246
    • /
    • 2001
  • This study is to measure the creep coefficient by 3 days, 7 days and 28 days in the age when loading for the quality assessment of $350kgf/cm^2$ in the high-strength concrete. And it is to analyze the behavior of creep coefficient by applying the experimental data though the compressive strength test, the elastic modulus test and the dry shrinkage test to the ACI-209, AASHTO-94 and CEB/FIP-90, the prediction mode, and the basis of concrete structural design. Also it is to analyze the behavior of short-term creep coefficient during 91 days in the age when loading through the experiment by using the regression analysis, the statistical theory. As applying it to the long-term behavior during 365 days and comparing with the creep prediction mode and examining it, the result from the analysis of the quality of the concrete is as follows. As the result of comparison and analysis about the ACI-209, AASHTO-94 and CEB/FIP-90, the prediction mode, and the basis of concrete structural design, the normal Portland cement class 1 shows the approximate value with the prediction of GEE/PIP-90 and the basis of concrete structural design, but in case of the prediction of ACI-209 and AASHTO-94, there would be worry of underestimation in the application.

  • PDF

Impact Echo Test for the Dynamic Characteristics of a Vibration-Mitigated Concrete Structure

  • Chung, Young-Soo;Park, Young-Goo
    • KCI Concrete Journal
    • /
    • 제14권1호
    • /
    • pp.23-29
    • /
    • 2002
  • Recent construction activities have given rise to civil petitions associated with vibration-induced damages or nuisances. To mitigate unfavorable effects of construction activities, the measures to reduce or isolate from vibration need to be adopted. In this research, a vibration-mitigated concrete, which is one of the active measures for reducing vibration in concrete structures, was investigated. Concrete was mixed with vibration-reducing materials (i.e. latex, rubber power, plastic resin, and polystyrofoam) to reduce vibration and tested to evaluate dynamic material properties and structural characteristics. Normal and high strength concrete specimens with a certain level of damage were also tested for comparisons. In addition, recycling tires and plastic materials were added to produce a vibration-reducing concrete. A total of 32 concrete bars and eight concrete beams were tested to investigate the dynamic material properties and structural characteristics. Wave measurements on concrete bars showed that vibration-mitigated concrete has larger material damping ratio than normal or high strength concrete. Styrofoam turned out to be the most effective vibration-reducing mixture. Flexural vibration tests on eight flexural concrete beams also revealed that material damping ratio of the concrete beams is much smaller than structural damping ratio for all the cases.

  • PDF

Numerical analyses of the force transfer in concrete-filled steel tube columns

  • Starossek, Uwe;Falah, Nabil;Lohning, Thomas
    • Structural Engineering and Mechanics
    • /
    • 제35권2호
    • /
    • pp.241-256
    • /
    • 2010
  • The interaction between steel tube and concrete core is the key issue for understanding the behavior of concrete-filled steel tube columns (CFTs). This study investigates the force transfer by natural bond or by mechanical shear connectors and the interaction between the steel tube and the concrete core under three types of loading. Two and three-dimensional nonlinear finite element models are developed to study the force transfer between steel tube and concrete core. The nonlinear finite element program ABAQUS is used. Material and geometric nonlinearities of concrete and steel are considered in the analysis. The damage plasticity model provided by ABAQUS is used to simulate the concrete material behavior. Comparisons between the finite element analyses and own experimental results are made to verify the finite element models. A good agreement is observed between the numerical and experimental results. Parametric studies using the numerical models are performed to investigate the effects of diameterto-thickness ratio, uniaxial compressive strength of concrete, length of shear connectors, and the tensile strength of shear connectors.

고성능 콘크리트를 충전한 각형강관 기둥의 구조적 거동 특성에 관한 연구 -재하조건별 거동특성- (A study on the Properties for Structural Behavior of High-Performance Concrete Filled Square Steel Tube Columns -The Behavior Properties by Loading Conditions-)

  • 박정민;이승조;김화중
    • 한국강구조학회 논문집
    • /
    • 제10권2호통권35호
    • /
    • pp.177-186
    • /
    • 1998
  • 콘크리트 충전 강관 기둥은 동일 단면의 비충전 강관 기둥에 비해 압축 내력이 우수하며 충전 콘크리트에 의한 강성의 향상, 국부좌굴 보강 효과에 의한 인성의 향상 등과 같은 구조적으로 우수한 점이 많다. 그러나. 강관과 충전 콘크리트의 상호작용 효과, 응력 분담율, 콘크리트의 파괴 양상 등에 대해서는 불분명한 점들이 많다. 본 연구는 일련의 실험을 통하여 고강도 콘크리트 충전 강관 기둥에 대해 재하 조건에 따른 구조적인 거동 특성에 대해 고찰하였다. 특히, 본 연구에서는 재하조건에 따른 강관과 콘크리트의 응력 분담율, 충전 콘크리트의 파괴 양상등에 대해 조사 하였다.

  • PDF

Structural behavior of slender circular steel-concrete composite columns under various means of load application

  • Johansson, Mathias;Gylltoft, Kent
    • Steel and Composite Structures
    • /
    • 제1권4호
    • /
    • pp.393-410
    • /
    • 2001
  • In an experimental and analytical study on the structural behavior of slender circular steel-concrete composite columns, eleven specimens were tested to investigate the effects of three ways to apply a load to a column. The load was applied eccentrically to the concrete section, to the steel section or to the entire section. Three-dimensional nonlinear finite element models were established and verified with the experimental results. The analytical models were also used to study how the behavior of the column was influenced by the bond strength between the steel tube and the concrete core and the by confinement of the concrete core offered by the steel tube. The results obtained from the tests and the finite element analyses showed that the behavior of the column was greatly influenced by the method used to apply a load to the column section. When relying on just the natural bond, full composite action was achieved only when the load was applied to the entire section of the column. Furthermore, because of the slenderness effects the columns did not exhibit the beneficial effects of composite behavior in terms of increased concrete strength due to the confinement.

Analysis of behaviour for hollow/solid concrete-filled CHS steel beams

  • Kvedaras, Audronis Kazimieras;Sauciuvenas, Gintas;Komka, Arunas;Jarmolajeva, Ela
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.293-308
    • /
    • 2015
  • Interaction between the external thin-walled steel tube and the internal concrete core significantly increases the bending resistance of composite beams and beam-columns in comparison with the steel or concrete members. There is presented a developed method for design of hollow and solid concrete-filled steel tubular beams based on test data, which gives better agreement with test results than EC4 because its limitation to take an increase in strength of concrete caused by confinement contradicts the recommendation of 6.7.2(4) that full composite action up to failure may be assumed between steel and concrete components of the member. Good agreement between the results of carried out experimental, numerical and theoretical investigations allows recommending the proposed method to use in design practice.

데크플레이트를 사용한 강섬유보강콘크리트 슬래브의 구조성능 평가 (Structural Performance Evaluation on the Slab with the SFRC and Steel Deck-plate)

  • 홍건호;채병민
    • 대한건축학회논문집:구조계
    • /
    • 제34권7호
    • /
    • pp.3-10
    • /
    • 2018
  • Steel fiber reinforced concrete can improve the resistance to cracking by adding steel fibers when mixing concrete. It can reduce the temperature and shrinkage cracks, and its flexural performance can be improved by increasing the effective moment of inertia. In this study, the deck-plate was used to replace the concrete form and reinforcing bars, and the steel fiber reinforced concrete was used to control the shrinkage and temperature cracks, and improve the flexural performance of the slab. Total 9 slab specimens were tested for analyzing the structural performance and serviceability. As a results, flexural capacity of the slab with deck-plate was evaluated to be superior to that of the normal reinforced concrete slab specimens with the same tensile reinforcement. The steel fiber reinforced concrete was found to have about 8% flexural capacity increase depending on the steel fiber content $15.7kg/m^3$. Also, in terms of flexural stiffness, the specimens using steel fiber reinforced concrete for the same parameters were evaluated to have a stiffness increase of about 30% compared with the case of using ordinary concrete. Especially, it was found that the stiffness of the test results was significantly higher than the analytical result because the increase of the tensile strength of the steel fiber reinforced concrete is not reflected in the current structural code.

Investigating the combination of natural and crushed gravel on the fresh and hardened properties of self-compacting concrete

  • Moosa Mazloom;Mohammad Ebrahim Charmsazi;Mohammad Hosein Parhizkari
    • Structural Monitoring and Maintenance
    • /
    • 제11권1호
    • /
    • pp.1-18
    • /
    • 2024
  • Self-compacting concrete is widely used around the globe today due to its special and unique properties. This study examines the effect of natural and crushed gravel combinations in different percentages in short-and long-term properties of concrete. The best utilized sand had a fineness modulus of 2.7. In the mentioned mix designs, silica fume was used with 0 and 7% of the weight of the cement. In order to check the properties of fresh and hardened concrete, 9 and 5 test types were performed, respectively. The carried out tests were slump flow, V-funnel, J-ring, L-box, U-box and column segregation for fresh concrete, and compressive, tensile and flexural strengths for hardened concrete. A mix with only 100% natural gravel was considered as the control mix. According to the results, the control mix design and the one containing 100% crushed gravel with silica fume were the best in fresh and hardened concrete tests, respectively. Finally, using the optimization method, a mix design with 25% natural gravel, 75% crushed gravel and silica fume was introduced as the best mix in terms of the results of both fresh and hardened concrete tests.