• Title/Summary/Keyword: Structural Concrete

Search Result 6,998, Processing Time 0.03 seconds

Strength Correction Factors due to Temperature Drop of Structural Concrete under Low Temperature by the Equivalent Age Method (저온환경에서 타설되는 구조체 콘크리트의 등가재령 방법을 활용한 기온보정강도 설정)

  • Choi, Youn-Hoo;Han, Min-Cheol;Lee, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.5
    • /
    • pp.409-416
    • /
    • 2020
  • In this paper, strength correction factors of the concretes incorporating ordinary Portland cement(OPC), fly ash(FA) and blast furnace slag(BS) with 50% of water to binder ratio due to temperature drop for standard room temperature(20±3℃) are provided. For this, strength development was done based on equivalent age method. For calculating the equivalent age, apparent activation energy was obtained with 24.69 kJ/mol in OPC, 46.59 kJ/mol in FA, 54.59 kJ/ol in BS systems. According to the estimation of strength development of the concretes, the use of FA and BS resulted in larger strength drop than that of OPC under low temperature compared to standard room temperature. Hence, strength correction factors(Tn) for OPC, FA and BS are suggested within 4~17℃ with every 3MPa levels.

Seismic performance evaluation of circular composite columns by shaking table test (진동대 실험을 통한 원형 합성 기둥의 내진 성능 평가)

  • Shim, Chang-Su;Chung, Young-Soo;Park, Ji-Ho;Park, Chang-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.71-81
    • /
    • 2007
  • For the design of composite bridge piers, detail requirements for the reinforcements is not clear to satisfy the required seismic performance. Composite bridge piers were suggested to reduce the sectional dimensions and to enhance the ductility of the columns under earthquake loadings. In this paper, five specimens of concrete encased composite columns of 400mm diameter with single core steel were fabricated to investigate the seismic performance of the composite columns. Shaking table tests and a Pseudo-Dynamic test were carried out and structural behavior of small-scaled models considering near-fault motions was evaluated. Test parameters were the pace of the transverse reinforcement, lap splice of longitudinal reinforcement and encased steel member sections. The displacement ductility from shaking table tests was lower than that from the pseudo-dynamic test. Limited ductile design and 50% lap splice of longitudinal reinforcement reduced the displacement ductility. Steel ratio showed significant effect on the ultimate strength. Lap splice and low transverse reinforcements reduced the displacement capacity. The energy dissipation capacity of composite columns did not show significant difference according to details.

A mechanical model of vehicle-slab track coupled system with differential subgrade settlement

  • Guo, Yu;Zhai, Wanming;Sun, Yu
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.15-25
    • /
    • 2018
  • Post-construction subgrade settlement especially differential settlement, has become a key issue in construction and operation of non-ballasted track on high-speed railway soil subgrade, which may also affect the dynamic performance of passing trains. To estimate the effect of differential subgrade settlement on the mechanical behaviors of the vehicle-slab track system, a detailed model considering nonlinear subgrade support and initial track state due to track self-weight is developed. Accordingly, analysis aiming at a typical high-speed vehicle coupled with a deteriorated slab track owing to differential subgrade settlement is carried out, in terms of two aspects: (i) determination of an initial mapping relationship between subgrade settlement and track deflections as well as contact state between track and subgrade based on a semi-analytical method; (ii) simulation of dynamic performance of the coupled system by employing a time integration approach. The investigation indicates that subgrade settlement results in additional track irregularity, and locally, the contact between the concrete track and the soil subgrade is prone to failure. Moreover, wheel-rail interaction is significantly exacerbated by the track degradation and abnormal responses occur as a result of the unsupported areas. Distributions of interlaminar contact forces in track system vary dramatically due to the combined effect of track deterioration and dynamic load. These may not only intensify the dynamic responses of the coupled system, but also have impacts on the long-term behavior of the track components.

Design for Radiotherapy Room with High Density Shielding Block (고 강도 차폐벽돌을 이용한 방사선치료실의 차폐설계)

  • Suh Chang Ok;Kim Gwi Eon;Chu Sung Sil
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.247-254
    • /
    • 2004
  • According to developing high energy linear accelerators and treatment methods, like (3 dimensional conformal radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT), many radiotherapy centers are replacing older linear accelerators with new higher technical machines. This often presents a shielding problem as the designed shield for the existing rooms is not adequate for the higher technical machines. Additional shielding in limited existing space becomes necessary. We are replacing older brachytherapy room with new higher technical linear accelerator for IMRT. This room is not adequate for the IMRT machine without additional shielding design. The logical development of optimum structural shielding designs with concrete and high density shielding blocks are presented. We obtained following results by comparison between the pre-calculating values and actual survey of completed LINAC installation. High density shielding blocks have more powerful radiation protection about 2 times.

  • PDF

Convergence Study on Participating Value & Propensity and Class Participation Behavior of College Students who Participate in Physical Education Class (교양체육수업 참여 대학생의 참여가치와 성향 및 수업 참여행동에 관한 융복합 연구)

  • Kim, Seung-Yong
    • Journal of Digital Convergence
    • /
    • v.13 no.5
    • /
    • pp.375-384
    • /
    • 2015
  • This study is aimed at analyzing class participation value of the students who participate in physical education class implemented by university, and inquiring into the convergence relations between students-perceived class participation propensity and participatory behavior. In an effort to verify hypotheses consequent on this research objectives, this study conducted confirmatory factor analysis, reliability analysis, correlation analysis, and structural equation model analysis using PASW 18.0 and AMOS 18.0. The concrete results of this research are as follows: First, the class participation value of the students participating in general physical education was found to have an influence on participatory propensity. Second, the participatory propensity of the students participating in general physical education was found to have an influence on class participation behavior intention.

Static Performance Test for New Wave Dissipating Block Reinforced with FRP (FRP로 보강된 신형 소파블록의 정적 성능 실험)

  • Paik, In-Yeol;Oh, Young-Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.4
    • /
    • pp.285-291
    • /
    • 2011
  • In this study the mechanical performance of the new wave dissipating block is evaluated through experiment and numerical analysis. Also, by selecting adequate reinforcement, the improvement of the structural performance is examined. The reinforcement is designed by predicting the amount of tensile force and the location where the tensile stress develops in the new wave dissipating block through numerical analysis. The new wave dissipating block is reinforced with the ordinary steel bars and the fiber reinforced plastic(FRP) bars which have advantages in ocean environment in terms of corrosion and fatigue. The test result shows that the fracture resistance of the un-reinforced concrete block is 350 kN which is about 6.2 times that of the weight of the block. All the test blocks which are reinforced by either steel of FRP bars show strength capacity of over 900 kN which is the maximum load of the test equipment. Although the single reinforcement with larger-diameter bars has advantage in terms of construction convenience, it is recommended to use multiple number of smaller-diameter bars in order to reduce the crack width.

Standardization of composite connections for trapezoid web profiled steel sections

  • Saggaff, A.;Tahir, M.M.;Sulaiman, A.;Ngian, S.P.;Mirza, J.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.765-784
    • /
    • 2015
  • Connections are usually designed either as pinned usually associated with simple construction or rigid normally is associated with continuous construction. However, the actual behaviour falls in between these two extreme cases. The use of partial strength or semi-rigid connections has been encouraged by Euro-code 3 and studies on semi-continuous construction have shown substantial savings in steel weight of the overall construction. Composite connections are proposed in this paper as partial or full strength connections. Standardized connection tables are developed based on checking on all possible failure modes as suggested by "component method" for beam-to-column composite connection on major axis. Four experimental tests were carried out to validate the proposed standardised connection table. The test results showed good agreement between experimental and theoretical values with the ratio in the range between 1.06 to 1.50. All tested specimens of the composite connections showed ductile type of failure with the formation of cracks occurred on concrete slab at maximum load. No failure occurred on the Trapezoidal Web Profiled Steel Section as beam and on the British Section as column.

A Study on the Applicability of Character Recognition Technology for Construction Supply Chain Management of Structural Steel Components and Precast Concrete Works (철골 및 PC 공사의 물류관리를 위한 문자 인식 기술의 적용성 검토)

  • Kim, Jun-Sik;Chin, Sangyoon;Yoon, Su-Won
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.4
    • /
    • pp.20-29
    • /
    • 2014
  • As construction projects increase their complexity, variety, and scale, various recognition applications (such as RFID, bar-code etc.) have been tried for managing material effectively in construction projects. However, existing recognition applications for construction material management have some limitations that cause additional works (such as attaching RFID tag), additional cost (labor cost, recognition device cost, etc.), and cognitive impairment of workers. Therefore, this study proposed a character recognition technology as an alternative of previous recognition technologies such as RFID, bar-code, etc. The technical feasibility of proposed technology was validated by three recognition tests. Additionally, this study proposed code the structure to manage materials using the character recognition technology. The effects of character recognition technology are presented by comparing with existing RFID-based logistics processes.

Developing An Automatic System for Quantity Taking-off Cut and Bent Re-Bar and Making a Placing Drawing (가공철근 물량산출 및 배근시공상세도 작성시스템 개발)

  • Park, Hyeon-Yong;Lee, Seung-Hyun;Kang, Tai-Kyung;Lee, Yoo-Sub
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.358-363
    • /
    • 2007
  • Reinforcing steel work plays an important role in terms of its structural performance or weight of construction cost for reinforced concrete structures. Precise estimation of re-bar quantity gives a basis for managing the reinforcing steel work effectively. However, the estimation process is still performed ineffectively based upon the expert's experience or manpower in spite of the advanced technology or improvement efforts. Therefore, the purpose of this research is to develop a prototype system for taking-off the quantity of reinforcing steel bars quickly and accurately in an order consistent with the specific members identified on the drawings. An estimate algorithm considering the connection, settlement and coating thickness of re-bars was suggested regarding to their replacement conditions which places more emphasis on constructibility. Also, this system produces the shop drawings automatically with the calculation results.

  • PDF

An Analysis of Horizontal Behaviour of H-Pile under Mechanically Stabilized Earth Wall Abutment (보강토 교대 하부 H-Pile 수평 거동특성 연구)

  • Kim, Nagyoung;Jeon, Kyungsoo;Lee, Yongjun;Jun, Jintaek;Shim, Jaewon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.47-59
    • /
    • 2008
  • Application of mechanically stabilized earth wall (MSEW) abutment has been rapidly increasing in United States of America, Pennsylvania since 2002. MSEW is effective for reducing construction cost and period compared to general concrete reinforced wall. In the paper, theoretical background and conventional criterion of MSEW abutment that is widely used abroad are analyzed. Based on the results, application of suitable MSEW abutment to domestic bridge type is examined. For the application of MSEW abutment in Korea, load interacting with upper shoe in domestic bridge types and structural analyses of beam seat and pile are investigated. As a result, all applications are possible except for PSC BOX Bridge that has heavy self-weight of girder. Through two and three dimensional numerical analyses, horizontal behaviour mechanisms between pile and MSEW were analyzed and field tests are also carried out for seven piles behind earth walls. From results of field tests, it is confirmed that an angle of internal friction of backfill material needs to be greater than 34 degree to use H-Pile as foundation of MSEW.

  • PDF