• 제목/요약/키워드: Structural Characteristics

검색결과 8,150건 처리시간 0.045초

양동마을 향단에 있어서 칸의 구축성 (Tectonic Characteristics of 'KAN' in Hyangdan(香壇) at Yang-Dong Village)

  • 장선주;한조동;이강훈
    • 한국농촌건축학회논문집
    • /
    • 제4권2호
    • /
    • pp.27-37
    • /
    • 2002
  • From the point of tectonic manner which is 'how to build a house' this study considers the characteristics of Kan in Hyangdan(香壇) at Yang-Dong Village. It was analysed with primary elements such as Kan, condition of a site, module, structural system, roofing system and their relationships in spatial and formal composition. Through the analysis, findings were achieved that characteristics of Kan to form a rectangle of 1 to root 2 proportion plan, enable irregularity in usage and regularity in compositional aspect and structural system to achieve intended roof design. In addition, Kan as a module is found to have a relative value that also regulates the whole in structural and aesthetical aspects.

  • PDF

Analysis of mechanical characteristics of superconducting field coil for 17 MW class high temperature superconducting synchronous motor

  • Kim, J.H.;Park, S.I.;Im, S.H.;Kim, H.M.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권3호
    • /
    • pp.13-19
    • /
    • 2013
  • Superconducting field coils using a high-temperature superconducting (HTS) wires with high current density generate high magnetic field of 2 to 5 [T] and electromagnetic force (Lorentz force) acting on the superconducting field coils also become a very strong from the point of view of a mechanical characteristics. Because mechanical stress caused by these powerful electromagnetic force is one of the factors which worsens the critical current performance and structural characteristics of HTS wire, the mechanical stress analysis should be performed when designing the superconducting field coils. In this paper, as part of structural design of superconducting field coils for 17 MW class superconducting ship propulsion motor, mechanical stress acting on the superconducting field coils was analyzed and structural safety was also determined by the coupling analysis system that is consists of commercial electromagnetic field analysis program and structural analysis program.

폼 충진 모자단면 빔의 굽힘붕괴 특성 (Bending Collapse Characteristics of Hat Section Beam Filled with Structural Foam)

  • 이일석;강성종
    • 한국자동차공학회논문집
    • /
    • 제14권2호
    • /
    • pp.92-99
    • /
    • 2006
  • Design capability for high safety vehicle with light weight is crucial to enhancing competitive power in vehicle market. The structural foam can contribute to restraining section distortion in body members undergoing bending collapse at vehicle crash. In this study, first, the validation of analysis model including structural foam model for simulating fracture behavior was discussed, and the bending collapse characteristics of five representative section types were analyzed and compared. Next, with changing the laminate foam shape, load carrying capability and absorbed energy were observed. The results suggests a design strategy of body members filled with laminate foam, leading to effectively elevating bending collapse characteristics with weight increase in the minimum.

비탄성 이력응답 및 지진특성을 반영한 변위증폭계수에 관한 연구 (A Study of Displacement Amplification Factors Considering Hysteretic Behavior of Structural Systems and Earthquake Characteristics)

  • 송종걸;김학수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.777-782
    • /
    • 2007
  • Displacement amplification factor can be used to estimate inelastic displacement demands from elastic displacement demands, The simple formula for displacement amplification factor considering hysteretic behavior of structural system and earthquake characteristics is proposed. And the effects of several parameters such as displacement ductility, strain hardening ratio, period, characteristics of earthquakes and hysteretic models for the displacement amplification factor are evaluated. Accuracy of the proposed formula is evaluated by comparing the displacement amplification factors estimated by existing and proposed formula with those calculated from inelastic time history analysis. The displacement amplification factors by proposed formulas provide a good agreement with those calculated by inelastic time history analysis.

  • PDF

ISM 2.45GHz/5.8GHz 이중대역 특성을 위한 십자형 평판 모노폴 안테나의 구조 변경 (Structural Modification of Crossed Planar Monopole Antenna for ISM 2.45GHz/5.8GHz Dual Band Characteristics)

  • 심재륜;전중창
    • 한국정보통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.13-18
    • /
    • 2015
  • 본 연구는 특정 안테나의 구조 변경을 통해 원하는 주파수 대역에서 이중대역 특성이 가능하도록 하는 안테나 구조 설계에 관한 연구이다. 대상 안테나는 광대역 특성을 가지는 십자형 평판 모노폴 안테나이고, 목표 주파수 대역은 ISM 2.45GHz/5.8GHz 이다. 이를 위해 몸체 안테나인 십자형 평판 모노폴 안테나에 추가적인 안테나 소자를 부가한 후 안테나의 길이와 모양을 임의대로 변경하기 위한 조정변수를 설정하여 목표 값에 접근하도록 다양한 시뮬레이션을 실시하였다. 시뮬레이션 결과 ISM 2.45GHz/5.8GHz에서 기준 이상의 대역폭과 이득을 얻을 수 있었다. 본 연구에서 시도한 안테나 구조 변경을 위한 조정변수의 도입은 이중대역(다중대역) 특성을 가지는 안테나 개발시 하나의 유용한 사례가 될 수 있다.

Analysis of Compression and Cushioning Behavior for Specific Molded Pulp Cushion

  • Jongmin Park;Gihyeong Im;Kyungseon Choi;Eunyoung Kim;Hyunmo Jung
    • 한국포장학회지
    • /
    • 제30권1호
    • /
    • pp.53-62
    • /
    • 2024
  • Molded pulp products has become more attractive than traditional materials such as expanded polystyrene foam (EPS) owing to low-priced recycled paper, environmental benefits such as biodegradability, and low production cost. In this study, various design factors regarding compression and cushioning characteristics of the molded pulp cushion with truncated pyramid-shaped structural units were analyzed using a test specimen with multiple structural units. The adopted structural factors were the geometric shape, wall thickness, and depth of the structural unit. The relative humidity was set at two levels. We derived the cushion curve model of the target molded pulp cushion using the stress-energy methodology. The coefficient of determination was approximately 0.8, which was lower than that for EPS (0.98). The cushioning performance of the molded pulp cushion was affected more by the structural factors of the structural unit than by the material characteristics. Repeated impacts, higher static stress, and drop height decreased the cushioning performance. Its compression behavior was investigated in four stages: elastic, first buckling, sub-buckling, and densification. It had greater rigidity during initial deformation stages; then, during plastic deformation, the rigidity was greatly reduced. The compression behavior was influenced by structural factors such as the geometric shape and depth of the structural unit and environmental conditions, rather than material properties. The biggest difference in the compression and cushioning characteristics of molded pulp cushion compared to EPS is that it is greatly affected by structural factors, and in addition, strength and resilience are expected to decrease due to humidity and repetitive loads, so future research is needed.

Effect of cylinder diameter and boat tail angle on the free vibration characteristics of a typical payload fairing

  • Ramamurti, V.;Rajarajan, S.;Rao, G. Venkateswara
    • Structural Engineering and Mechanics
    • /
    • 제13권3호
    • /
    • pp.345-353
    • /
    • 2002
  • Three noded plate and shell finite element and 3D beam element in conjunction with Lanczos method are used for studying the effect of boat tail angle on the free vibration characteristics of a typical payload fairing for three different cylinder diameters with height to diameter ratio 1.5. Configurations without boat tail structural member are also studied. One half of the one side fairing structure is considered for the analysis and symmetric boundary conditions are used.