• Title/Summary/Keyword: Structural Characteristics

Search Result 8,150, Processing Time 0.042 seconds

Evaluation of Structural Performance and Dynamic Characteristics of Korean Traditional Timber Structure Sungnyemun (한국 전통 목조건축 숭례문의 구조성능 및 동적특성 평가)

  • Kim, Yeong-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.607-614
    • /
    • 2015
  • In this research, the structural analysis and safety evaluation for Sungnyemun -No.1 national treasure of Korea- was performed. Roof loads were calculated in detail, and structural analysis model was constructed using Midas Gen ver.820. Static structural analysis under vertical loads was performed and safety of main structural members and serviceability of main horizontal members were evaluated. To evaluate dynamic characteristics of Sungnyemun, both field measurements by impact hammer test and eigenvalue analysis by structural analysis software were performed and the results were compared. Sungnyemun showed rooms in their structural capacity.

Seismic performance and its favorable structural system of three-tower suspension bridge

  • Zhang, Xin-Jun;Fu, Guo-Ning
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.215-229
    • /
    • 2014
  • Due to the lack of effective longitudinal constraint for center tower, structural stiffness of three-tower suspension bridge becomes less than that of two-tower suspension bridge, and therefore it becomes more susceptible to the seismic action. By taking a three-tower suspension bridge-the Taizhou Highway Bridge over the Yangtze River with two main spans of 1080 m as example, structural dynamic characteristics and seismic performance of the bridge is investigated, and the effects of cable's sag to span ratio, structural stiffness of the center tower, and longitudinal constraint of the girder on seismic response of the bridge are also investigated, and the favorable structural system is discussed with respect to seismic performance. The results show that structural response under lateral seismic action is more remarkable, especially for the side towers, and therefore more attentions should be paid to the lateral seismic performance and also the side towers. Large cable's sag, flexible center tower and the longitudinal elastic cable between the center tower and the girder are favorable to improve structural seismic performance of long-span three-tower suspension bridges.

In-structure Response Evaluation of Shear Wall Structure via Shaking Table Tests (진동대 실험을 통한 전단벽 구조물의 층응답 특성 평가)

  • Jung, Jae-Wook;Ha, Jeong-Gon;Hahm, Daegi;Kim, Min Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.129-135
    • /
    • 2021
  • After the manual shutdown of the Wolseong nuclear power plant due to an earthquake in Gyeongju in 2016, anxiety about the earthquake safety of nuclear power plants has become a major social issue. The shear wall structure used as a major structural element in nuclear power plants is widely used as a major structural member because of its high resistance to horizontal loads such as earthquakes. However, due to the complexity of the structure, it is challenging to predict the dynamic characteristics of the structure. In this study, a three-story shear wall structure is fabricated, and the in-structure response characteristics of the shear wall structure are evaluated through shaking table tests. The test is performed using the Gyeongju earthquake that occurred in 2016, and the response characteristics due to the domestic earthquake are evaluated.

Impact of the Aerodynamic Characteristics of Twin Buildings on Wind Responses (트윈 빌딩의 공력 특성이 풍응답에 미치는 영향 평가)

  • Kim, Bub-Ryur
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • The wind responses of twin buildings are determined by the characteristics of wind loads and the dynamic characteristics of the structural systems of the buildings. In this study, the characteristics of wind pressure that influence wind responses were identified for two different spacings between the twin buildings using a wind tunnel test and the proper orthogonal decomposition (POD) method. Structural dynamic characteristics were also identified using 3D structural system modeling. The double modal transformation method was utilized to evaluate the characteristics of wind pressure for across-wind and along-wind conditions and the effect of the dynamic characteristics of each structure on the wind responses. The channeling and vortex effects were identified through the POD method. Across-wind loads were significantly affected by the spacings between the twin buildings, whereas along-wind loads were minimally affected. Similarly, while using the double modal transformation method, a significant difference was noticed in case of the cross-participation coefficients in the across-wind direction condition for the different spacings between the buildings; however, the along-wind direction condition showed negligible difference. Therefore, the spacing between the two buildings plays a more important role in across-wind responses compared to along-wind responses.

The Optimum Modification of Dynamic Characteristics of Stiffened Plate Structure Including the Number of Stiffener (보강재의 수를 포함한 보강판 구조물의 동특성의 최적변경)

  • 박성현;고재용
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.4
    • /
    • pp.461-469
    • /
    • 2001
  • The purpose of this paper is the optimum modification of dynamic characteristics of stiffened plate structure including the number of stiffener. This paper shows the optimum structural modification method by dynamic sensitivity analysis and quasi-least squares method and considers it's validity. In the method of the optimization, finite element method, sensitivity analysis and optimum structural modification method are used. The change of natural frequency and total weight are made to be an objective function. Thickness of plate, the number of stiffener and cross section moment of stiffener become a design variable. The dynamic characteristics of stiffened plate structure is analyzed using finite element method. Next, rate of change of dynamic characteristics by the change of design variable is calculated using the sensitivity analysis. Then, amount of change of design variable is calculated using optimum structural modification method. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate structure including the number of stiffener.

  • PDF

Common and Domain-Specific Cognitive Characteristics of Gifted Students: A Hierarchical Structural Model of Human Abilities

  • Song, Kwang-Han
    • Proceedings of the Korean Society for the Gifted Conference
    • /
    • 2005.05a
    • /
    • pp.173-180
    • /
    • 2005
  • The purpose of this study was to identify common and domain-specific cognitive characteristics of gifted students based on a hierarchical structural model of human abilities. This study is based on the premise that abilities identified by tests can appear as observable characteristics in test or school situations. Abilities proposed by major models of intelligence were reviewed in terms of their power to explain cognitive characteristics of gifted students. However, due to the lack of their explanatory power and disagreement on common and domain-specific cognitive abilities, a new hierarchical structural model was conceptualized in a unique way based on interrelationships between abilities proposed by the models. The newly established model hypothesizes a cognitive mechanism that accounts for how domain-specific knowledge is formed, as well as which abilities are common and domain-specific, how they are related functionally, and how they account for common and domain-specific cognitive characteristics of gifted students. The cognitive mechanism has important implications for our understanding of the chronically controversial concepts, 'intelligence' and 'knowledge.' Clearer definitions of what intelligence is (g or multiple), what knowledge is, and how knowledge develops ('genetic or environmental,' 'rationalistic or empiricist') may result from this model.

  • PDF

Fractal behavior identification for monitoring data of dam safety

  • Su, Huaizhi;Wen, Zhiping;Wang, Feng
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.529-541
    • /
    • 2016
  • Under the interaction between dam body, dam foundation and external environment, the dam structural behavior presents the time-varying nonlinear characteristics. According to the prototypical observations, the correct identification on above nonlinear characteristics is very important for dam safety control. It is difficult to implement the description, analysis and diagnosis for dam structural behavior by use of any linear method. Based on the rescaled range analysis approach, the algorithm is proposed to identify and extract the fractal feature on observed dam structural behavior. The displacement behavior of one actual dam is taken as an example. The fractal long-range correlation for observed displacement behavior is analyzed and revealed. The feasibility and validity of the proposed method is verified. It is indicated that the mechanism evidence can be provided for the prediction and diagnosis of dam structural behavior by using the fractal identification method. The proposed approach has a high potential for other similar applications.

Structural Optimization and Performance Evaluation of Ultra Precision Co-axial Ferrule Grinding Machining System (초미세 고기능 동축가공 연삭 시스템의 구조 최적화 및 특성 평가)

  • Ahn K.J.;Lee H.J.;Kim G.J.;Kim G.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.559-560
    • /
    • 2006
  • Fiber optic connector, ferrule, is a device to connect and align fiber optics cable on fiber-optic communication system. In general $ZrO_2$ ceramic ferrule is manufactured by grinding process because the demands precision is very high. For the precision grinding machining, it is very important that structure of co-axial ferrule grinding system is optimized. In this paper, Structural analysis was performed to analyze bed and frame structure of co-axial grinding machine. Deformation and modal analysis for natural frequency was performed using ANSYS design space program to analyze structural characteristics. New improved model of bed and frame structure was proposed based on initial basic model. Therefore, we estimated the structural characteristics precision co-axial grinding machining system.

  • PDF

Time-dependent effects on dynamic properties of cable-stayed bridges

  • Au, Francis T.K.;Si, X.T.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.139-155
    • /
    • 2012
  • Structural health monitoring systems are often installed on bridges to provide assessments of the need for structural maintenance and repair. Damage or deterioration may be detected by observation of changes in bridge characteristics evaluated from measured structural responses. However, construction materials such as concrete and steel cables exhibit certain time-dependent behaviour, which also results in changes in structural characteristics. If these are not accounted for properly, false alarms may arise. This paper proposes a systematic and efficient method to study the time-dependent effects on the dynamic properties of cable-stayed bridges. After establishing the finite element model of a cable-stayed bridge taking into account geometric nonlinearities and time-dependent behaviour, long-term time-dependent analysis is carried out by time integration. Then the dynamic properties of the bridge after a certain period can be obtained. The effects of time-dependent behaviour of construction materials on the dynamic properties of typical cable-stayed bridges are investigated in detail.

Structural Health Monitoring Methods using PZT-Actuated Flexural Vibration of Beams (PZT 에 의해 굽힘 가진을 받는 보의 구조건전도 모니터링)

  • Kim, Seung-Joon;Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.601-605
    • /
    • 2007
  • This paper describes the experimental method to monitor the structural integrity. The crack on structures changes the wave propagation characteristics of structures. To monitor this change, frequency dependent variation of dynamic stiffness of beam structures is obtained by using beam transfer function method, and its trends are compared to undamaged one for identifying the location and size of the crack. Piezoelectric actuators were used to generate flexural vibrations. It eliminated various restrictions of continuously measuring wave propagation characteristics and monitoring structural integrity. The structural integrity was identified with minimal number of measurements and smart structures employing PZT actuations.

  • PDF