• 제목/요약/키워드: Structural Causal Models (SCM)

검색결과 1건 처리시간 0.014초

AI, 인과성, 사회과학의 통합: 인과 딥러닝을 통한 사회현상의 이해 (Integration of AI, Causality, and Social Sciences: Understanding Social Phenomena through Causal Deep Learning)

  • 이석민
    • 분석과 대안
    • /
    • 제8권3호
    • /
    • pp.125-150
    • /
    • 2024
  • 이 연구는 사회과학 연구에서 인공지능과 인과추론의 통합, 특히 인과적 딥러닝에 초점을 맞추고, Pearl의 구조적 인과모델, Rubin의 잠재적 결과 프레임워크, Schölkopf의 인과적 표현 학습 등 주요 이론들을 검토하였다. 또한 딥러닝을 활용한 구조적 인과모델, 반사실적 추론, 인과 발견 알고리즘 등의 방법론을 논의하였다. 본 연구는 소셜 미디어 분석, 경제 정책, 공중 보건, 교육 분야에서의 응용 사례를 제시하며, 인과적 딥러닝이 복잡한 사회 현상에 대한 세밀한 이해를 가능케 함을 보여주고 있다. 또한 모델의 복잡성, 인과 식별, 해석 가능성, 그리고 프라이버시 같은 윤리적 고려사항 등 주요 과제들을 다루었다. 향후 연구 방향으로 새로운 AI 아키텍처 개발, 실시간 인과 추론, 다중 도메인 일반화 등을 제시하였다. 비록 한계점들이 존재하지만, 인과적 딥러닝은 사회과학 연구 강화와 증거기반 정책 수립에 상당한 잠재력을 보이며, 전 세계적인 복잡한 사회 문제 해결에 기여할 것으로 기대된다. 특히 본 연구는 빅데이터 환경에서의 인과관계 식별과 해석의 중요성을 강조하며, 전통적인 통계적 방법론과 최신 딥러닝 기술의 결합이 가져올 시너지 효과를 탐구하고 있다. 또한 이 분야의 발전이 사회과학 연구의 패러다임을 어떻게 변화시킬 수 있는지에 대한 논의를 제공함으로써, 향후 사회과학과 인공지능 기술의 융합 연구에 대한 방향성을 제시하고자 하였다.