• Title/Summary/Keyword: Strong pressure gradient

Search Result 59, Processing Time 0.021 seconds

A Study on the Characteristics of Delayed Hydride Cracking in Zr-2.5Nb Pressure Tube with the Heating-up and Heat-treatment (열처리 및 가열방식에 따른 Zr-2.5Nb 압력관의 수소지연균열 특성에 관한 연구)

  • Na, Eun-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.69-73
    • /
    • 2009
  • The objective of this study was to obtain a better understanding of the delayed hydride cracking (DHC) of Zr-2.5Nb alloy. The DHC model has some defects: first, it cannot explain why the DHC velocity (DHCV) becomes constant regardless of an applied stress intensity factor, even though the stress gradient is affected by the applied stress intensity factor at the notch tip. Second, it cannot explain why the DHCV has a strong dependence on the method of approaching the test temperature by a cool-down or a heating-up, even under the same stress gradient, and third, it cannot predict any hydride size effect on the DHC velocity. The DHC tests were conducted on Zr-2.5Nb compact tension specimens with the test temperatures reached by a heating-up method and a cool-down method. Crack velocities were measured in hydrided specimens, which were cooled from solution-treatment temperatures at different rates by being furnace-cooled, water-quenched, and liquid nitrogen-quenched. The resulting hydride size, morphology, and distributions were examined by optical metallography. It was found that fast cooling rates, which produce very finely dispersed hydrides, result in higher crack growth rates. This different DHC behavior of the Zr-2.5Nb tube with the cooling rate after a homogenization treatment is due to the precipitation of the $\gamma$-hydrides only in the water-quenched Zr-2.5Nb tube. This experiment will provide supporting evidence that the terminal solid solubility of a dissolution (TSSD) of $\gamma$-hydrides is higher than that of $\delta$-hydrides.

Gas hydrate stability field in the southwestern Ulleung Basin, East Sea (동해 울릉분지 남서부 해역에서의 가스 하이드레이트 안정영역)

  • Ryu Byong Jae;Don Sun woo;Chang Sung Hyong;Oh Jin yong
    • The Korean Journal of Petroleum Geology
    • /
    • v.7 no.1_2 s.8
    • /
    • pp.1-6
    • /
    • 1999
  • Natural gas hydrate, a solid compound of natural gas (mainly methane) and water in the low temperature and high pressure, is widely distributed in permafrost region and deep sea sediments. Gas hydrate stability field (GHSF), which corresponds to the conditions of a stable existence of solid gas hydrate without dissociation, depends on temperature, pressure, and composition of gas and interstitial water. Gas hydrate-saturated sediment are easily recognized by the bottom simulating reflector (BSR), a strong-amplitude sea bottom-mimic reflector in seismic profiles. It is known that BSR is associated with the basal boundary of the GHSF, The purpose of this study is to define the GHSF and its occurrence in the southwestern part of Ulleung Basin, East Sea. The hydrothermal gradient is measured using the expandable bathythermograph (XBT) and the geothermal gradient data are utilized from previous drilling results for the adjacent area. By the laboratory work using methane and NaCl $3.0 wt{\%}$ solution, it is shown that the equilibrium pressures of the gas hydrate reach to 2,920.2 kPa at 274.15 K and to 18,090 kPa at 289.95 K for the study area. Consequently, it is interpreted that the lower boundary of the GHSF is about 210 m beneath 400-m-deep sea bottom and about 480 m beneath 1,100-m-deep sea bottom. The resultant boundary is well matched with the depth of the BSR obtained from the seismic data analysis for the study area.

  • PDF

Properties of Galaxies in Cosmic Filaments around the Virgo Cluster

  • Lee, Youngdae;Kim, Suk;Rey, Soo-Chang;Chung, Jiwon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.64.2-64.2
    • /
    • 2020
  • We present the properties of galaxies in filaments around the Virgo cluster with respect to their vertical distance from the filament spine. Using the NASA-Sloan Atlas and group catalogs, we select galaxies that do not belong to groups in filaments. The filament member galaxies are then defined as those located within 3.5 scale length from the filament spine. The filaments are mainly (~86%) composed of low-mass dwarf galaxies of logh2M∗/M⊙ < 9 dominantly located on the blue cloud in color-magnitude diagrams. We observe that the g - r color and stellar mass of galaxies correlate with their vertical distance from the filament spine in which the color becomes red and stellar mass decreases with increasing vertical filament distance. The galaxies were divided into two subsamples in different stellar mass ranges, with lower-mass (logh2M∗/M⊙ ≤ 8) galaxies showing a clear negative g-r color gradient, whereas higher-mass (logh2M∗/M⊙ > 8) galaxies have a flat distribution against the vertical filament distance. We observe a negative EW(Hα) gradient for higher-mass galaxies, whereas lower-mass galaxies show no distinct variation in EW(Hα) against the vertical filament distance. In contrast, the NUV - r color distribution of higher-mass galaxies shows no strong dependence on the vertical filament distance, whereas the lower-mass galaxies show a distinct negative NUV - r color gradient. We do not witness clear gradients of HI fraction in either the higher- or lower-mass subsamples. We propose that the negative color and stellar mass gradients of galaxies can be explained by mass assembly from past galaxy mergers at different vertical filament distances. In addition, galaxy interactions might be responsible for the contrasting features of EW(Hα) and NUV - r color distributions between the higher- and lower-mass subsamples. The HI fraction distributions of the two subsamples suggest that ram-pressure stripping and gas accretion could be ignorable processes in the Virgo filaments.

  • PDF

Experimental study of turbulent flow in a U-bend of circular cross-section (원형단면의 곡관에서의 난류유동 측정)

  • Lee, Geon-Hwi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.956-965
    • /
    • 1998
  • Hot-wire measurement of the longitudinal and radial velocity components and Reynolds stresses are reported for developing turbulent flow in a strongly curved 180 deg. pipe and its tangents. Slanted wire is rotated to 6 directions and the voltage outputs of them are combined to obtain the mean velocities and Reynolds stresses. Significant double maxima in the longitudinal velocity component appear in the bend. V-profiles reveal the development of a strong secondary flow. This secondary flow is induced by the transverse pressure gradient set up between the outer(r$\sub$o/) and inner(r$\sub$i/) wall region of the bend. Another second cross-stream flow develops after .theta.=135 deg. and its direction is opposed to that of main second flow.

Experimental study on flame kernel development in swirling flow (선회류에서 화염 핵 발달에 대한 실험적 연구)

  • Yu, J.;Bae, C.;Sheppard, C.G.W.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.50-53
    • /
    • 2001
  • Flame propagation during the initial stages of ignition in a non-premixed swirl, having some of characteristics of the primary zone of an aero gas turbine combustor, has been investigated. Nd:YAG laser was adopted as the principal ignition source to allow arbitrary placing of the ignition site i subsequent flame development was monitored using a natural light high speed filming technique for many ignition site at two different swirl ratios and an overall equivalence ratio of 0.9. For ignition offset from the burner centreline, buoyancy force associated with radial pressure gradient produced a strong inward movement of the flame kernel. At the burner exit. flame kernels invariably developed into cylindrical form and a 'radial confinement /axia expansion' (RCAE) process was observed.

  • PDF

A study on the combustion instability in a bluffbody dump combustor (가스터빈 연소기의 화염 불안정성에 관한 연구)

  • Lee, Byeong-Jun;Preston, L.H.;Santavicca, D.A.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.1022-1029
    • /
    • 1998
  • The relation of the inlet fuel distribution, velocity, and overall equivalence ratio to the stability of a lean burning no-swirl dump combustor was examined. Premixed or partially premixed natural gas was introduced into the air stream, which flowed to the dump region through an annular inlet pipe. Inlet air was preheated upto 400 deg.C. Combustion instability was observed to occur at higher value of equivalence ratio (> 0.6) as the degree of unpremixedness was increased. Instabilities exhibited a dominant frequency of ~ 500 Hz, which corresponded to a half wave mode of combustor. CH chemiluminescence and pressure fluctuations were in-phase when combustion instabilities occurred. Acetone LIF images revealed that there was a strong fuel concentration gradient across the inlet annulus. Phase resolved OH LIF images showed that inlet fuel distribution was affected by the combustion instabilities.

Comparison of Various Turbulence Models for the Calculation of Plane of Symmetry Flows (대칭단면에서의 난류모형 비교)

  • 손창현;최도형;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.1052-1060
    • /
    • 1989
  • Using a vortex stretching invariant term, the two-layer k-.epsilon. model has been modified to account for the extra staining of turbulence due to the mean-flow convergence and divergence. The calculations of turbulent boundary layers in a plane of symmetry are compared for experimental cases which are an axisymmetric body at an incidence of 15.deg.. The comparisons between the calculations and experimental data show that additional modifications to the dissipation rate equation have brought the significant improvement to the prediction of plane of symmetry boundary layers in the strong mean-flow convergence and divergence.

Effect of Convex Wall Curvature on Three-Dimensional Behavior of Film Cooling Jet

  • Lee, Sang-Woo;Lee, Joon-Sik;Keon Kuk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1121-1136
    • /
    • 2002
  • The flow characteristics of film coolant issuing into turbulent boundary layer developing on a convex surface have been investigated by means of flow visualization and three-dimensional velocity measurement. The Schlieren optical system with a spark light source was adopted to visualize the jet trajectory injected at 35° and 90° inclination angles. A five-hole directional pressure probe was used to measure three-dimensional mean velocity components at the injection angle of 35°. Flow visualization shows that at the 90° injection, the jet flow is greatly changed near the jet exit due to strong interaction with the crossflow. On the other hand, the balance between radial pressure gradient and centrifugal force plays an important role to govern the jet flow at the 35° injection. The velocity measurement shows that at a velocity ratio of 0.5, the curvature stabilizes downstream flow, which results in weakening of the bound vortex structure. However, the injectant flow is separated from the convex wall gradually, and the bound vortex maintains its structure far downstream at a velocity ratio of 1.98 with two pairs of counter rotating vortices.

3-Dimensional Locally Elliptic Numerical Predictions of Turbulent Jet in a Crossflow In A Curved Duct (곡관내의 주유동에 분사되는 난류제트에 대한 3차원 국소타원형 수치해석)

  • 정형호;이택식;이준식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.470-483
    • /
    • 1990
  • Turbulent jet in a crossflow, issuing from a row of holes on a convex surface of 90 .deg. bend duct, is predicted by a 3-dimensional numerical method. The Cartesian coordinate system in adopted in upstream and downstream tangents and the cylindrical polar coordinate system in curved region. The Reynolds stresses and heat fluxes are obtained from a standard k-e model in the core region and van Driest model in the vicinity of the wall. The governing equations are discretized by a finite volume method and solutions are obtained by a locally elliptic calculation procedure. Pressure and convective terms are treated by SIMPLE algorithm and hybrid scheme respectively. A vortex initially induced by the injected jet has been built up due to the interaction with the secondary flow caused by pressure gradient and centrifugal force. The vortex structure has a strong influence on the wall cooling effectiveness. Another vortex like horseshoe is formed in the vicinity of the injection hole and its strength is getting weak as it moves downward.

Prediction of Bypass Flow Rate through Gas Diffusion Layer in PEMFC with Serpentine Flow Channels (사행 유로를 갖는 고분자 전해질 연료전지의 기체확산층 내부에서의 우회 유동 예측)

  • Jeon, Se-Gye;Kim, Kuoung-Youn
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.293-299
    • /
    • 2012
  • The serpentine flow channel is widely used in polymer electrolyte membrane fuel cells (PEMFCs) to prevent flooding phenomena because it effectively removes liquid water in the flow channel. The pressure drop between inlet and outlet increases as compared with straight channels due to minor losses associated with the corners of the turning configurations. This results in a strong pressure gradient between adjacent channels in specific regions, where some amount of reactant gas can be delivered to catalyst layers by convection through a gas diffusion layer (GDL). The enhancement of the convective flow in the GDL, so-called bypass flow, affects fuel cell performance since the bypass flow influences the reactant transport and thus its concentration over the active area. In the present paper, for the bipolar plate design, a simple analytic model has been proposed to predict the bypass flow in the serpentine type flow channels and validated with three-dimensional numerical simulation results.