• Title/Summary/Keyword: Strong axis connection

Search Result 18, Processing Time 0.017 seconds

The Structural Behavior of Strong Axis Connections by Type of Weak Axis Connection - In Case of Loading Gravity Load - (약축 접합부 형식에 따른 강축 접합부의 구조적 거동 - 연직하중이 작용하는 경우 -)

  • Kim, Sang Seup;Lee, Do Hyung;Ham, Jeong Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.275-284
    • /
    • 2004
  • The behavior of the connection for beam-to-column weak axis connection and its details should be identified. Thus, each element is considered a panel zone, and the horizontal stiffener's presence or absence and position in bracket-type welding connection are used as variables to compare the behavior of strong axis connection and weak axis connection. In this study, the strength of connection is calculated by substituting the simple beam-strengthened vertical stiffeners for connection in the presence of horizontal stiffeners. In the absence of horizontal stiffeners, the strength of connection can be calculated using local flange bending strength considering local web yielding strength, web crippling, and web buckling strength. The results of the theoretical analysis and experiments are compared.

Mechanical performance of a new I-section weak-axis column bending connection

  • Lu, Linfeng;Xu, Yinglu;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.31-44
    • /
    • 2018
  • This paper reports a novel steel beam-to-column connection suitable for use in the weak axis of I-section column. Monotonic and cyclic loading experimental investigations and numerical analysis of the proposed weak-axis connection were conducted, and the calculation procedure of the beam-column relative rotation angle and plastic rotation angle was developed and described in details. A comparative analysis of mechanical property and steel consumption were employed for the proposed I-section column weak-axis connection and box-section column bending connection. The result showed that no signs of fracturing were observed and the plastic hinge formed reliably in the beam section away from the skin plate under the beam end monotonic loading, and the plastic hinge formed much closer to the skin plate under the beam end cyclic loading. The fracture of welds between diaphragm and skin plate would cause an unstable hysteretic response under the column top horizontal cyclic loading. The proposed weak-axis connection system could not only simplify the design calculation progress when I-section column is adopted in frame structural design but also effectively satisfy the requirements of 'strong joint and weak member', as well as lower steel consumption.

Development and Strength Evaluation of Beam-to-Column Connection Details in Weak Axis of H-shape Column (H형강 기둥의 약축에 대한 기둥-보 접합상세 개발 및 내력평가)

  • Kim, Sang Seup;Lee, Do Hyung;Ham, Jeong Tae;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.169-180
    • /
    • 2004
  • One of the most influential elements is the moment resisting beam-to-column connection vis-a-vis the behavior and cost of multistory steel building frames. Majority of these connections are column flange connections attached to beam frames. This is called strong-axis connection. Another type of moment resisting connection commonly found in building frames is the web axis connection. In this type of connection, the beams are attached to the plane of the column web perpendicularly. It is called the weak-axis beam. and it tends to bend the column at its weak axis. In this study, some of the fundamental behaviors of beam-to-column connections were examined by changing the connection details as weil as comparing them with previous connection details. This study sought to develop the details in the beam-to-column connection in the weak axis for middle- and low-rise steel construction systems.

Development of Beam-to-Column Connection Details with Horizontal Stiffeners in Weak Axis of H-shape Column (수평스티프너를 이용한 철골 기둥-보 약축접합부 상세 개발에 관한 연구)

  • Lee, Do Hyung;Ham, Jeong Tae;Kim, Sung Bae;Kim, Young Ho;Kim, Sang Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.641-652
    • /
    • 2004
  • The strong beam-to-column axis connections in steel structures have been studied for a long time to develop the strength and resistance of the connections. There have been very few studies, however, related to weak axis connections. Domestically, the bracket-type connection is commonly used in weak axis connections to elevate the efficiency of the constructions when the steel structures are constructed. The bracket-type connection detail has been applied moderately to weak axis connections. Therefore, the bracket-type connection in weak axis connections might be brittle and over-designed. The results of this study showed that the welding on the web of the column and the beam was unnecessary. In addition, this study confirmed that the new weak axis connection proposed in this study was superior to the previous connection in terms of strength and ductility.

Cyclic performance and design recommendations of a novel weak-axis reduced beam section connection

  • Lu, Linfeng;Xu, Yinglu;Liu, Jie;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.337-353
    • /
    • 2018
  • In previous weak-axis moment connection tests, brittle fracture always initiated near the edge of the beam flange groove weld due to force flow towards the stiffer column flanges, which is the opposite pattern as strong-axis moment connections. As part of the China NSFC (51278061) study, this paper tested two full-scale novel weak-axis reduced beam section moment connections, including one exterior frame connection specimen SJ-1 under beam end monotonic loading and one interior frame joint specimen SJ-2 under column top cyclic loading. Test results showed that these two specimens were able to satisfy the demands of FEMA-267 (1995) or ANSI/AISC 341-10 (2010) without experiencing brittle fracture. A parametric analysis using the finite element software ABAQUS was carried out to better understand the cyclic performance of the novel weak-axis reduced beam section moment connections, and the influence of the distance between skin plate and reduced beam section, a, the length of the reduced beam section, b, and the cutting depth of the reduced beam section, c, on the cyclic performance was analyzed. It was found that increasing three parametric values reasonably is beneficial to forming beam plastic hinges, and increasing the parameter a is conducive to reducing stress concentration of beam flange groove welds while increasing the parameters b and c can only reduce the peak stress of beam flange groove welds. The rules recommended by FEMA350 (2000) are suitable for designing the proposed weak-axis RBS moment connection, and a proven calculation formulation is given to determine the thickness of skin plate, the key components in the proposed weak-axis connections. Based on the experimental and numerical results, a design procedure for the proposed weak-axis RBS moment connections was developed.

Experimental Study on Seismic Performance Enhancement of Exposed Column-base Plate Strong-axis Connections for Small-Sized Steel Buildings (소규모 철골조건축물 강축방향 노출형 주각부의 내진성능 향상을 위한 실험 연구)

  • You, Young-Chan
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.12
    • /
    • pp.11-20
    • /
    • 2018
  • The purpose of this study is to investigate the seismic performance of exposed column-base plate strong-axis connections for small-sized steel buildings. Even though the seismic design for small-sized buildings became mandatory since Dec.2017, the arbitrary connection details in steel structure have been applied at the construction site, which is considered to be very insufficient to secure structural safety and stability considering the increased seismic risk. Therefore, a series of experimental test programs had been carried out to develop enhanced connection details in order to ensue the adequate seismic safety of small buildings. The hysteretic behavior of the exposed column-base plate connections commonly used in Korea seem to be very pure poor due to the "Rocking" phenomena between anchor plate and concrete by the residual plastic deformation of anchor bolts. A series of hysteretic tests were conducted to find the solution to overcome the "Rocking" phenomena of the exposed column-base plate connections, finally the stable seismic behavior was obtained by uisng at least 8 anchor bolts with good bonding strength to the protptype specimen.

Nonlinear Analysis of Steel Frames Using Visual Basic (Visual Basic을 이용한 강뼈대 구조물의 비선형 해석)

  • 윤영조;김선희;이종석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.403-410
    • /
    • 1999
  • General1y, H-section is used for columns and beams in the middle and low steel building, But it has a strong and weak axis. Thus if H-section is used for columns, the structure needs reinforcement on the weak axis. Therefore recently, square holler section(S.H.S) is used for columns because it is able to coiler the vulnerability of H-section. Structural analysis is usually executed under the assumption that connections are either ideally pinned joint or fully rigid joint. Actually all connections are semi-rigid which possess a rotational stiffness. Therefore it can be designed economically as using the property of connections which has a rotational stiffness. This paper presents a prediction model curve which is fitted Kishi-Chen power Model about the behavior of connection between H-beam and S.H.S column. Non-linear analysis program was considered the non-linearity of semi-rigid connection and the geometrical non-linearity under the effect of axial force. It was programed by FORTRAN90 and Visual Basic.

  • PDF

Cyclic Testing of Bracket and WUF-B Type Weak-Axis Steel Moment Connections (브라켓 및 WUF-B 형식 철골모멘트골조 약축접합부 내진성능평가)

  • Lee, Kang Min;Jeong, Hee Taek;Yoon, Seok Ryong;Lee, Eun Mo;Oh, Kyung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.483-491
    • /
    • 2008
  • There has been much focus on the strong axis steel moment connections after the Northridge earthquake in 1994. However, research studieson the seismic behavior of weak axis moment connections could be hardly found despite the fact that these connection details have been frequently used as seismic details of MRF in Korea. Therefore, the objective of this research is to provide better knowledge on the seismic behavior of weak-axis steel moment connections, which can be widely applicable to many structures with similar characteristics. For this purpose, an experimental program was designed and performed with twotypes of weak-axis steel moment connections, namely the bracket type and WUF-B type, based on the survey of existing field data and literatures. Using the experimental results obtained from the quasi-static cyclic testing of these specimens, structural performances of the joints such as hysteretic curves, maximum strength capacities and the strain of reinforced bars were investigated. From the test results, the bracket-type connection was shown to have more than a 5% story drift capacity, compared with the WUF-B type connection's 4%. These specimens were also shown to have higher strength capacities than the nominal design strength. The bracket-type connection showed a slow strength degradation after maximum strength was researched. However,the WUF-B type connection showed a rapid strength degradation that caused brittle behavior.

Numerical investigation seismic performance of rigid skewed beam-to-column connection with reduced beam section

  • Zareia, Ali;Vaghefi, Mohammad;Fiouz, Ali R.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.507-528
    • /
    • 2016
  • Reduced beam section (RBS) moment resisting connections are among the most economical and practical rigid steel connections developed in the aftermath of the 1994 Northridge and the 1995 Kobe earthquakes. Although the performance of RBS connection has been widely studied, this connection has not been subject to in the skewed conditions. In this study, the seismic performance of dogbone connection was investigated at different angles. The Commercial ABAQUS software was used to simulate the samples. The numerical results are first compared with experimental results to verify the accuracy. Nonlinear static analysis with von Mises yield criterion materials and the finite elements method were used to analyze the behavior of the samples The selected Hardening Strain of materials at cyclic loading and monotonic loading were kinematics and isotropic respectively The results show that in addition to reverse twisting of columns, change in beam angle relative to the central axis of the column has little impact on hysteresis response of samples. Any increase in the angle, leads to increased non-elastic resistance. As for Weak panel zone, with increase of the angle between the beam and the column, the initial submission will take place at a later time and at a larger rotation angle in the panel zone and this represents reduced amount of perpendicular force exerted on the column flange. In balanced and strong panel zones, with increase in the angle between the beam and the central axis of the column, the reduced beam section (RBS), reaches the failure limit faster and at a lower rotation angle. In connection of skewed beam, balanced panel zone, due to its good performance in disposition of plasticity process away from connection points and high energy absorption, is the best choice for panel zone. The ratio of maximum moment developed on the column was found to be within 0.84 to 1 plastic anchor point, which shows prevention of brittle fracture in connections.

Modeling of Sediment Transport and Sand Bank Formation in a Macrotidal

  • Park, Moon-Jin
    • Journal of the korean society of oceanography
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • A two-dimensional numerical model was applied to investigate the sediment transport and sand bank formation in a macrotidal sea, the Kyunggi and Asan Bays. The tidal residual currents show quite complex pattern including counter-rotating eddies off the northwestern corner of the Dugjeok Island that reflect the promontory effect. Complex residual eddies are also present off the coast of the Taeanbando and in the Asan Bay. Net sediment transport pattern shows that sandy sediments in the Kyunggi and Asan Bays are generally transported landward from the outer sea suggesting sediment trapping inside the bays. This phenomenon may be related to the formation and maintenance of numerous sand banks in this macrotidal sea. Alternate occurrences of deposition and erosion predicted from the numerical model along the coast of the Taeanbando with strong deposition on the southwestern part of the 'Jangansatoe'(JSB), a large sand ridge off the coast of the Taeanbando appear to reflect the loose connection of JSB, The 'Joongangcheontoe', a central sand bank (CSB) with the main axis in the NW-SE direction in the Asan Bay may undergo a modification with strong deposition along the northeastern flank. These results indicate that the sand banks are actively modified and maintained by the strong tidal currents in this shallow macrotidal sea.

  • PDF