• Title/Summary/Keyword: Strong Swirl

검색결과 83건 처리시간 0.024초

LFG 혼합연료의 화염 안정화 특성 (Characteristics of Flame Stabilization of the LFG Mixing Gas)

  • 이창언;황철홍;김선호
    • 대한기계학회논문집B
    • /
    • 제26권2호
    • /
    • pp.328-335
    • /
    • 2002
  • In this study, experiments were performed to investigate the characteristics of flame stabilization of the LFG mixing gas. LFG has merely half heating value compared with liquified natural gas but can be greatly utilized as a commercial fuel. In order to use LFG in practical combustors, Webbe Index and heating value of LFG mixing gas were adjusted by mixing LPG with LFG. The comparisons were conducted between CH$_4$and LFG mixing gas for searching the region of flame stabilization based upon the flame blowout at maximum fuel stream velocity. As a result, the flame stability of LFG mixing gas was not improved with that of CH$_4$in non-swirl and weak swirl diffusion flame. However, LFG mixing gas had wide flame stabilization region rather than CH$_4$with increasing ambient flow rate in strong swirl. It was also found that flame stability was affected by included quantity of inert gas such as CO$_2$in the weak swirl but by heating value of fuel in strong swirl.

環狀旋回噴流의 燃燒特性에 관한 硏究 (A Study on the Combustion Characteristics of Annular Swirl Jet)

  • 이창식
    • 대한기계학회논문집
    • /
    • 제7권4호
    • /
    • pp.410-416
    • /
    • 1983
  • This study presents the combustion characteristics and flame structure of annular swirling flow when there were changes the equivalence ratio and swirl number of swirling jet of fuelair mixture. The conclusions of this study are as follows; During the investigations in which the change of equivalence ratio and swirl number were studied, three basic shapes of flame were observed in this study. Visible flame lengths of swirling jet results in the decrease with increasing of swirl number and air-fuel ratio of mixture. Radial distribution of flame temperature with strong swirl is higher than that of weak swirl at the same equivalence ratio of mixture. The angle of spread of the annular jet increases with the increase of swirl number. When the swirl intensity is increased in a jet, the decay of concentration of carbon dioxide is decreased with the distance from nozzle exit of burner.

환형연소기의 Multi Swirl Injector 상호간섭 영향에 관한 연구(1) (A Study on the Turbulent Flowfield in the Annular Combustor with the Multi Swirl Injectors)

  • 김종찬;성홍계
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.289-292
    • /
    • 2009
  • 다중 스월 환형 연소기의 난류 유동장을 Large Eddy Simulation(LES)와 병렬 계산 기법을 사용하여 모사하였다. 해석에 이용된 연소기 모델은 GEAE 의 LM6000 연소기이다. 연소기 내에서 와류의 생성과 소멸은 단일 인젝터 해석결과와 유사하나, 인젝터간 상호 인접구간에서의 와류의 충돌은 인젝터간 와류 강도가 다르며, 이로 인하여 복잡하고 강한 압력파가 연소실 내에 전파됨을 확인하였다. 특히 다중 스월인젝터를 모사하므로서 횡방향의 압력 진동이 수치적으로 포획되었다.

  • PDF

Experimental Studies on Self-Oscillation of a Swirl Coaxial Injector

  • Kim, Dongjun;Wonho Jeong;Jihyuk Im;Youngbin Yoon
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.228-233
    • /
    • 2004
  • The spray and acoustic characteristics by the self-oscillation of a swirl coaxial injector were experimentally studied. The self-oscillation of a swirl coaxial injector is defined as pressure and flowrate oscillations by a time-delayed feedback between liquid and gas phase and has strong influences on atomization and mixing processes. Hence the occurrence and effect of the self-oscillation are measured using shadow photography technique, acoustic test and PDPA. The occurrence of self-oscillation largely depends on the injection conditions, such as pressure drop of liquid phase and relative momentum ratio. From the experimental results, self-oscillation occurs when the momentum of gas phase is enough large and the smaller the pressure drop of liquid phase is, the better self-oscillation occurs at the same momentum ratio. The self-oscillation is also affected by injector geometries, increasing the recess length results in the expansion of self-oscillation region and the increase of sound pressure level. The self-oscillation of a swirl coaxial injector accompanies a high intensity scream and this scream may provide harmful disturbances to combustion processes. Self-oscillation leads to strong changes in the drop size distribution and smoothly varies the slope of radial SMD distribution.

  • PDF

원관내 급확대부 하류의 강선회난류에 관한 수치해석 (Prediction of strongly swirling turbulent flow downstream of an abrupt pipe expansion)

  • 김광용;장윤석
    • 설비공학논문집
    • /
    • 제9권1호
    • /
    • pp.23-32
    • /
    • 1997
  • Swirling turbulent flows downstream of an abrupt axisymmetric expansion in a pipe are analyzed numerically by a second-order turbulence closure. Predictions for the flows without swirl and with strong swirl are obtained. The governing differential equations are discretized by finite volume approach. The results show that the on-axis recirculation induced by the strong swirl is correctly reproduced. The predictions for mean velocity components and turbulent normal stresses agree well with experimental data far downstream of expansion, but show large discrepancies in wall-bounded recirculation zone.

  • PDF

짝(Pair)형태의 경사 공급구를 갖는 하이브리드 저널 베어링의 로터 동특성에 관한 수치해석 (A Numerical Analysis on the Rotordynamic Characteristics of A Hybrid Journal Bearing with Pair-Type Angled Injection Orifices)

  • 김창호;이용복
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제25회 춘계학술대회
    • /
    • pp.111-121
    • /
    • 1997
  • The stability of a rotor-bearing system supported by swirl-controlled hybrid journal bearing with pair-type angled injection orifices is investigated for improvement of the whirl frequency ratio by allowing effective control of the tangential flow inside the bearing clearance, i.e., by achieving more freedom in controlling strength and direction of the supply tangential flow inside the bearing clearance. It is suggested that the system instability can be improved through the change of bearing dynamic characteristic parameters with the swirl control. The orifice diameter d$_0$ and recess injection angle $\alpha$ along with combinations of swirl/anti-swirl supply pressures and directions (3.0-3.0MPa, 4.0-2.0MPa, 2.0-4.0MPa) are selected for design parameters for swirl-controlled effective factors dependent on journal speeds (3000, 9000, 15000, 21000 rpm). It has been found that the orifice diameter do shows strong effects on effective maneuverability of direct-stiffness and direct damping values, while recess injection angle $\alpha$ results in substantial magnitude and direction of cross-stiffness. Specifically, recess injection parameters which are functions of angle of orifice feeding flow and recess dimensions showed very feasible effect on the stability of swirl-controlled rotor-bearing system.

  • PDF

짝(Pair) 형태의 경사 공급구를 갖는 하이브리드 저널 베어링의 로터 동특성에 관한 수치해석 (A Numerical Analysis on the Rotordynamic Characteristics of a Hybrid Journal Bearing with Pair-Type Angled Injection Orifices)

  • 김창호;이용복
    • Tribology and Lubricants
    • /
    • 제13권3호
    • /
    • pp.63-72
    • /
    • 1997
  • The stability of a rotor-bearing system supported by swirl-controlled hybrid journal bearing with pair-type angled injection orifices is investigated for improvement of the whirl frequency ratio by allowing effective control of the tangential flow inside the bearing clearance, i.e., by achieving more freedom in controlling strength and direction of the supply tangential flow inside the bearing clearance. It is suggested that the system instability can be improved through the change of bearing dynamic characteristic parameters with the swirl control. The orifice diameter $d_0$ and recess injection angle $\alpha$ along with combinations of swirl/anti-swirl supply pressures and directions (3.0~3.0 MPa, 4.0~2.0 MPa, 2.0~4.0 MPa) are selected for design parameters for swirl-controlled effective factors dependent on journal speeds (3000, 9000, 15000, 21000 rpm). It has been found that the orifice diameter $d_0$ shows strong effects on effective maneuverability of direct-stiffness and direct damping values, while recess injection angle $\alpha$ results in substantial effects on the magnitude and direction of cross-stiffness. Specifically, recess injection parameters which are functions of angle of orifice feeding flow and recess dimensions showed very feasible effect on the stability control of swirl-controlled rotor-bearing system.

LFG 혼합 연료의 화염 안정화 특성 (Characteristics of Flame Stabilization of the LFG Mixing Gas)

  • 김선호;오창보;이창언;이인대
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.165-172
    • /
    • 1999
  • Landfill gas has merely half heating value compared with liquified natural gas but can be greatly utilized as a commercial fuel. The authors have examined emission characteristics as well as measured burning velocity of LFG mixed gas which contains plenty of $CO_{2}$. With the viewpoint of fuel utilization, flame stability could be one of important characteristics of LFG. In this study, the comparison experiments are conducted between $CH_{4}$ and LFG for searching the region of flame stabilization based upon the flame blowout at maximum fuel stream velocity. As a result, it is found that stabilization region of LFG is not improved with that of $CH_{4}$ in non-swirl/or weak swirl jet diffusion flame. However, it is also known that flame stability is hardly affected by inert gas in the strong swirl with considering widened flame stabilization region of LFG rather than LNG.

  • PDF

환형 유동을 수반하는 초음속 스월 제트 유동의 가시화 (Visualization of the Supersonic Swirl Jet with Annular Stream)

  • 김중배;이권희;;김희동
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2003년도 추계학술대회 논문집
    • /
    • pp.91-94
    • /
    • 2003
  • The present study addresses experimental results to investigate the details of the near field flow structures produced in the under-expanded, dual, coaxial, swirling, jet. The sonic swilling jets are emitted from a sonic inner nozzle and the outer annular nozzle produces the co/counter swirling streams against the primary swirling jet, respectively. The interactions between both the secondary annular swirling and primary inner supersonic swirling jets are quantified by the pilot impact and static pressure measurements, and visualized by using the Schlieren optical method. The experiment has been performed fur different swirl intensities and pressure ratios. The results obtained show that the secondary co-swirling jet significantly changes the inner under-expanded swirling jet, such as the recirculation zone, pressure distribution, through strong interactions between both the swirling jets, and the effect of the secondary counter-swirling jet on the primary inner jet is similar to the secondary co-swirl jet case.

  • PDF

Preliminary numerical study of single bubble dynamics in swirl flow using volume of fluid method

  • Li, Zhongchun;Qiu, Zhifang;Du, Sijia;Ding, Shuhua;Bao, Hui;Song, Xiaoming;Deng, Jian
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1119-1126
    • /
    • 2021
  • Spacer grid with mixing vane had been widely used in nuclear reactor core. One of the main feather of spacer grid with mixing vane was that strong swirl flow was formed after the spacer grid. The swirl flow not only changed the bubble generation in the near wall field, but also affected the bubble behaviors in the center region of the subchannel. The interaction between bubble and the swirl flow was one of the basic phenomena for the two phase flow modeling in fuel assembly. To obatin better understanding on the bubble behaviors in swirl flow, full three dimension numerical simulations were conducted in the present paper. The swirl flow was assumed in the cylindral calculation domain. The bubble interface was captured by Volume Of Fluid (VOF) method. The properties of saturated water and steam at different pressure were applied in the simulation. The bubble trajectory, motion, shape and force were obtained based on the bubble parameters captured by VOF. The simulation cases in the present study included single bubble with different size, at different angular velocity conditions and at different pressure conditions. The results indicated that bubble migrated to the center in swirl flow with spiral motion type. The lateral migration was mainly related to shear stress magnitude and bubble size. The bubble moved toward the center with high velocity when the swirl magnitude was high. The largest bubble had the highest lateral migration velocity in the present study range. The effect of pressure was small when bubble size was the same. The prelimenery simulation result would be beneficial for better understanding complex two phase flow phenomena in fuel assembly with spacer grid.