• Title/Summary/Keyword: Strong Shock

Search Result 243, Processing Time 0.025 seconds

Inhibitory Effects of Lactobacillus plantarum Lipoteichoic Acid (LTA) on Staphylococcus aureus LTA-Induced Tumor Necrosis Factor-Alpha Production

  • Kim, Han-Geun;Lee, Seung-Yeon;Kim, Na-Ra;Ko, Mi-Yeon;Lee, Jung-Min;Yi, Tae-Hoo;Chung, Sung-Kyun;Chung, Dae-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1191-1196
    • /
    • 2008
  • Staphylococcus aureus is a common etiologic agent for Gram-positive sepsis, and its lipoteichoic acid (LTA) may be important in causing Gram-positive bacterial septic shock. Here, we demonstrate that highly purified LTA (pLTA) isolated from Lactobacillus plantarum inhibited S. aureus LTA (aLTA)-induced TNF-${\alpha}$ production in THP-1 cells. Whereas pLTA scarcely induced TNF-${\alpha}$ production, aLTA induced excessive TNF-${\alpha}$ production. Interestingly, aLTA-induced TNF-${\alpha}$ production was inhibited by pLTA pretreatment. Compared with pLTA, aLTA induced a strong signal transduction through the MyD88, NF-${\kappa}B$, and MAP kinases. This signaling, however, was reduced by a pLTA pretreatment, and resulted in the inhibition of aLTA-induced TNF-${\alpha}$ production. Whereas dealanylated LTAs, as well as native LTAs, contributed to TNF-${\alpha}$ induction or TNF-${\alpha}$ reduction, deacylated LTAs did not, indicating that the acyl chain of LTA played an important role in the LTA-mediated immune regulation. These results suggest that pLTA may act as an antagonist for aLTA, and that an antagonistic pLTA may be a useful agent for suppressing the septic shock caused by Gram-positive bacteria.

Dynamic performance of girder bridges with explosion-proof and aseismic system

  • Wang, Jingyu;Yuan, Wancheng;Wu, Xun;Wei, Kai
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.419-426
    • /
    • 2017
  • Recently, the transportation of dangerous explosive goods is increasing, which makes vehicle blasting accidents a potential threat for the safety of bridge structures. In addition, blasting accidents happen more easily when earthquake occurs. Excessive dynamic response of bridges under extreme loads may cause local member damage, serviceability issues, or even failure of the whole structure. In this paper, a new explosion-proof and aseismic system is proposed including cable support damping bearing and steel-fiber reinforced concrete based on the existing researches. Then, considering one 40m-span simply supported concrete T-bridge as the prototype, through scale model test and numerical simulation, the dynamic response of the bridge under three conditions including only earthquake, only blast load and the combination of the two extreme loads is obtained and the applicability of this explosion-proof and aseismic system is explored. Results of the study show that this explosion-proof and aseismic system has good adaptability to seism and blast load at different level. The reducing vibration isolation efficiency of cable support damping bearing is pretty high. Increasing cables does not affect the good shock-absorption performance of the original bearing. The new system is good at shock absorption and displacement limitation. It works well in reducing the vertical dynamic response of beam body, and could limit the relative displacement between main girder and capping beam in different orientation so as to solve the problem of beam falling. The study also shows that the enhancement of steel fibers in concrete could significantly improve the blast resistance of main beam. Results of this paper can be used in the process of antiknock design, and provide strong theoretical basis for comprehensive protection and support of girder bridges.

PAGAN I: MULTI-FREQUENCY POLARIMETRY OF AGN JETS WITH KVN

  • KIM, JAE-YOUNG;TRIPPE, SASCHA;SOHN, BONG WON;OH, JUNGHWAN;PARK, JONG-HO;LEE, SANG-SUNG;LEE, TAESEOK;KIM, DAEWON
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.5
    • /
    • pp.285-298
    • /
    • 2015
  • Active Galactic Nuclei (AGN) with bright radio jets offer the opportunity to study the structure of and physical conditions in relativistic outflows. For such studies, multi-frequency polarimetric very long baseline interferometric (VLBI) observations are important as they directly probe particle densities, magnetic field geometries, and several other parameters. We present results from first-epoch data obtained by the Korean VLBI Network (KVN) within the frame of the Plasma Physics of Active Galactic Nuclei (PAGaN) project. We observed seven radio-bright nearby AGN at frequencies of 22, 43, 86, and 129 GHz in dual polarization mode. Our observations constrain apparent brightness temperatures of jet components and radio cores in our sample to > 108.01 K and > 109.86 K, respectively. Degrees of linear polarization mL are relatively low overall: less than 10%. This indicates suppression of polarization by strong turbulence in the jets. We found an exceptionally high degree of polarization in a jet component of BL Lac at 43 GHz, with mL ~ 40%. Assuming a transverse shock front propagating downstream along the jet, the shock front being almost parallel to the line of sight can explain the high degree of polarization.

IGRINS observations of a Herbig Be star, MWC 1080

  • Kim, Il-Joong;Oh, Heeyoung;Jeong, Woong-Seob
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.65.2-65.2
    • /
    • 2018
  • Through MIRIS $Pa{\alpha}$ Galactic plane survey, a lot of $Pa{\alpha}$ blobs were detected along the plane. To reveal their characteristics, we are planning to collect NIR high-resolution spectroscopic data for them by using Immersion GRating INfrared Spectrograph (IGRINS). Here, we present the preliminary results of the IGRINS observations for a Herbig Be star, MWC 1080, which is one of the $Pa{\alpha}$ blobs detected in Cepheus. This Herbig Be star is known to possess a lot of young stellar objects (YSOs) and bright MIR ($10-20{\mu}m$) nebulosity in its vicinity. From IPHAS $H{\alpha}$ data, we revealed large extended $H{\alpha}$ features that correlate well with MIR and 13CO morphologies around MWC 1080. A part of the $H{\alpha}$ features shows a bow shock shape to the northeast of the primary star MWC 1080A, which seems to be due to an outflow from MWC 1080A. Through IGRINS observations, we detected faint [Fe II] ${\lambda}1.644{\mu}m$ and H2 1-0 S(1) ${\lambda}2.122{\mu}m$ emission lines around the bow shock feature. Interestingly, to the east region of MWC 1080A, we also detected strong [Fe II] and H2 emission lines with a couple of velocity components, which suggests the detection of a new outflow from another YSO. Broad $Br{\gamma}$ ${\lambda}2.1662{\mu}m$ line and H2 lines with various velocity components were detected around the bright MIR and $H{\alpha}$ nebulosity as well.

  • PDF

Performance Characteristics Under Non-Reacting Condition with Respect to Length of a Subscale Diffuser for High-Altitude Simulation (고고도 모사를 위한 축소형 디퓨저의 길이변화에 따른 비연소장에서의 성능특성)

  • Jeong, Bonggoo;Kim, Hong Jip;Jeon, Junsu;Ko, Youngsung;Han, Yeoung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.321-328
    • /
    • 2014
  • The performance characteristics of a subscale diffuser under non-reacting conditions for high-altitude simulation were numerically investigated with respect to different lengths of the secondary throat diffuser. The ratio of the length of the diffuser entrance to the nozzle exit diameter was set to 0, 50, and 100%. In addition, flow characteristics were studied for a range of length-to-diameter ratios of the secondary throat diffuser. An insufficient diffuser entrance length caused contraction of the plume immediately after the nozzle exit. When the length-to-diameter ratio was less than 8, a strong Mach disk was formed inside the diffuser, resulting in a sharp increase in pressure. In addition, flow characteristics in the diverging part of the diffuser were investigated for a range of diverging part lengths. A short diverging part may lead to abrupt pressure recovery, resulting in the possible application of mechanical load to the diffuser.

Study of Base DRAG Prediction With Chamber Pressure at Super-Sonic Flow (초음속 유동에서 챔버 압력에 따른 기저항력 변화 예측)

  • Kim, Duk-Min;Nam, Junyeop;Lee, Hyoung Jin;Noh, Kyung-Ho;Lee, Daeyeon;Kang, Dong-Gi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.849-859
    • /
    • 2020
  • The semi-empirical equation and commercial computational tool were used to predict the base drag of a guided missile with free-stream Mach numbers and chamber pressures, and the results were generally agree each other. Differences in flow characteristics and base drags were observed with over/under expansion conditions by the nozzle. Under the over-expansion condition, the base pressure decreased as the expansion fan was generated at upper region of the base, and base pressure decreased further with increasing free-stream Mach number as the expansion becomes strong. Under the under-expansion conditions, a shock wave was generated around the base by the influence of the nozzle flow, which increased the base pressure, and the effect increased as the chamber pressure increased. Under the same chamber pressure condition, as the free-stream Mach number increases, the characteristic that the base pressure decreases as the shock wave generated at the base moves downstream was observed.

Feasibility Confirmation of Angular Velocity Stall Control for Small-Scaled Wind Turbine System by Phase Plane Method

  • Asharif, Faramarz;Shiro, Tamaki;Teppei, Hirata;Nagado, Tsutomu;Nagata, Tomokazu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.4
    • /
    • pp.240-247
    • /
    • 2013
  • The main aim of this study was to suppress the angular velocity against strong winds during storms and analyze the stability and performance of the phase plane method. The utilization of small-scale wind turbine system has become common in agriculture, houses, etc. Therefore, it is considered to be a scheme for preserving the natural energy or avoiding the use of fossil fuels. Moreover, settling small-scaled wind turbines is simpler and more acceptable compared to ordinary huge wind turbines. In addition, after converting the energy there is no requirement for distribution. Therefore, a much lower cost can be expected for small-scaled wind turbines. On the other hand, this system cannot be operated continuously because the small-scaled wind turbine consists of a small blade that has low inertia momentum. Therefore, it may exceed the boundary of angular velocity, which may cause a fault in the system due to the centrifugal force. The aim of this study was to reduce the angular velocity by controlling the stall factor. Stall factor control consists of two control methods. One is a shock absorber that is loaded in the junction of the axis of the blade of the wind turbine gear wheel and the other is pitch angle control. Basically, the stall factor itself exhibits nonlinear behavior. Therefore, this paper confirmed the feasibility of stall factor control in producing desirable performance whilst maintaining stability.

  • PDF

Statistical study on nightside geosynchronous magnetic field responses to interplanetary shocks

  • Park, Jong-Sun;Kim, Khan-Hyuk;Araki, Tohru;Lee, Dong-Hun;Lee, Ensang;Jin, Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.116.1-116.1
    • /
    • 2012
  • When an interplanetary (IP) shock passes over the Earth's magnetosphere, the geosynchronous magnetic field strength near the noon is always enhanced, while the geosynchronous magnetic field near the midnight decreases or increases. In order to understand what determines the positive or negative magnetic field response at nightside geosynchronous orbit to sudden increases in the solar wind dynamic pressure, we have examined 120 IP shock-associated sudden commencements (SC) using magnetic field data from the GOES spacecraft near the midnight (MLT = 2200~0200) and found the following magnetic field perturbation characteristics. (1) There is a strong seasonal dependence of geosynchronous magnetic field perturbations during the passage of IP shocks. That is, the SC-associated geosynchronous magnetic field near the midnight increases (a positive response) in summer and decreases (a negative response) in winter. (2) These field perturbations are dominated by the radial magnetic field component rather than the north-south magnetic field component at nightside geosynchronous orbit. (3) The magnetic elevation angles corresponding to positive and negative responses decrease and increase, respectively. These field perturbation properties can be explained by the location of the cross-tail current enhancement during SC interval with respect to geosynchronous spacecraft position.

  • PDF

Effect of Promoters on the Heme Production in a Recombinant Corynebacterium glutamicum (재조합 Corynebacterium glutamicum으로부터 헴첼 생산에 미치는 프로모터의 효과)

  • Yang, Hyungmo;Kim, Pil
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.337-342
    • /
    • 2019
  • We published that bacterial heme was over-produced in a recombinant Corynebacterium glutamicum expressing 5-aminolevulinic acid synthase ($hemA^+$) under control of a constitutive promoter ($P_{180}$) and the heme-producing C. glutamicum had commercial potentials; as an iron feed additive for swine and as a preservative for lactic acid bacteria. To enhance the heme production, the $hemA^+$ gene was expressed under controls of various promoters in the recombinant C. glutamicum. The $hemA^+$ expression by $P_{gapA}$ (a constitutive glycolytic promoter of glyceraldehyde-3-phosphate dehydrogenase) led 75% increase of heme production while the expression by $P_{H36}$ (a constitutive, very strong synthetic promoter) resulted in 50% decrease compared with the control ($hemA^+$ expression by $P_{180}$ constitutive promoter). The $hemA^+$ expression by a late log-phase activating $P_{sod}$ (an oxidative-stress responding promoter of superoxide dismutase) led 50% greater heme production than the control. The $hemA^+$ expression led by a heat-shock responding chaperone promoter ($P_{dnaK}$) resulted in 121% increase of heme production at the optimized heat-shock conditions. The promoter strength and induction phase are discussed based on the results for the heme production at an industrial scale.

Environment Dynamism and Strategic Technology Resource Protection: Claims of Priority of Korean High-tech Electronics Firms (환경 역동성과 전략적 기술자원의 보호: 한국 하이테크 전자기업의 우선권주장출원)

  • Kim, Doyoon;Shin, Dongyoub
    • Knowledge Management Research
    • /
    • v.22 no.1
    • /
    • pp.57-84
    • /
    • 2021
  • In this paper, we explore market and environmental factors which affecting organization's priority claim application which is more powerful and prompt strategic method to protect technology from competitors under uncertain and volatile environments. This study empirically examines why organizations strategically choose the priority claim application which is more strong tactics to protect technology as the source of sustainable competitive advantage. We suggest that market and environmental factors, such as exogenous shock, volatility, and uncertainty, may also affect strategic decision that organization take patent application with claiming priority. The results of our analysis of priority claim application in the Korean high-tech electronics industry from 1994 to 2008 showed that these three strategic factors affected the technology protection decision and organization's status also moderate theses effects, as predicted in our hypotheses.