• Title/Summary/Keyword: Stromal cells

Search Result 387, Processing Time 0.029 seconds

The Therapeutic Effects of Optimal Dose of Mesenchymal Stem Cells in a Murine Model of an Elastase Induced-Emphysema

  • Kim, You-Sun;Kim, Ji-Young;Huh, Jin Won;Lee, Sei Won;Choi, Soo Jin;Oh, Yeon-Mok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.78 no.3
    • /
    • pp.239-245
    • /
    • 2015
  • Background: Chronic obstructive pulmonary disease is characterized by emphysema, chronic bronchitis, and small airway remodeling. The alveolar destruction associated with emphysema cannot be repaired by current clinical practices. Stem cell therapy has been successfully used in animal models of cigarette smoke- and elastase-induced emphysema. However, the optimal dose of mesenchymal stem cells (MSCs) for the most effective therapy has not yet been determined. It is vital to determine the optimal dose of MSCs for clinical application in emphysema cases. Methods: In the present study, we evaluated the therapeutic effects of various doses of MSCs on elastase-induced emphysema in mice. When 3 different doses of MSCs were intravenously injected into mice treated with elastase, only $5{\times}10^4$ MSCs showed a significant effect on the emphysematous mouse lung. We also identified action mechanisms of MSCs based on apoptosis, lung regeneration, and protease/antiprotease imbalance. Results: The MSCs were not related with caspase-3/7 dependent apoptosis. But activity of matrix metalloproteinase 9 increased by emphysematous lung was decreased by intravenously injected MSCs. Vascular endothelial growth factor were also increased in lung from MSC injected mice, as compared to un-injected mice. Conclusion: This is the first study on the optimal dose of MSCs as a therapeutic candidate. This data may provide important basic data for determining dosage in clinical application of MSCs in emphysema patients.

Micropapillary Variant of Urothelial Carcinoma of the Urinary Bladder: Report of a Case with Cytologic Diagnosis in Urine Specimen (방광의 미세유두형 요로상피암종의 세포소견 -1예 보고-)

  • Lee, Young-Seok;Lee, Hyun-Joo;Choi, Jung-Woo;Shin, Bong-Kyung;Kim, Han-Kyem;Kim, In-Sun;Kim, Ae-Ree
    • The Korean Journal of Cytopathology
    • /
    • v.17 no.1
    • /
    • pp.46-50
    • /
    • 2006
  • A micropapillary variant of urothelial carcinoma (MPC) is a distinct entity with an aggressive clinical course. It has a micropapillary configuration resembling that of ovarian papillary serous carcinoma. Its cytologic features have rarely been reported. We report a case of MPC detected by urine cytology. A woman aged 93 years presented with a chief complaint of macroscopic hematuria. Cytology of her voided urine showed clusters of malignant cells in a micropapillary configuration. Each tumor cell had a vacuolated cytoplasm, a high nuclear:cytoplasmic ratio, and irregular hyperchromatic nuclei. An ureteroscopic examination revealed exophytic sessile papillary masses extending from the left lateral wall to the anterolateral wall of the urinary bladder. A transurethral resection of the tumor was carried out. The tumor was characterized by delicate papillae with a thin, well-developed fibrovascular stromal core and numerous secondary micropapillae lined with small cuboidal cells containing uniform low- to intermediate-grade nuclei and occasional intracytoplasmic mucinous inclusions. These tumor cells infiltrated the muscle layers of the bladder, and lymphatic tumor emboli were frequently seen. Recognizing that the presence of MPC components in urinary cytology is important for distinguishing this lesion from low-grade papillary lesions and high-grade urothelial carcinomas can result in early detection and earlier treatment for an improved treatment outcome.

Tracking Intravenous Adipose-Derived Mesenchymal Stem Cells in a Model of Elastase-Induced Emphysema

  • Kim, You-Sun;Kim, Ji-Young;Shin, Dong-Myung;Huh, Jin Won;Lee, Sei Won;Oh, Yeon-Mok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.77 no.3
    • /
    • pp.116-123
    • /
    • 2014
  • Background: Mesenchymal stem cells (MSCs) obtained from bone marrow or adipose tissue can successfully repair emphysematous animal lungs, which is a characteristic of chronic obstructive pulmonary disease. Here, we describe the cellular distribution of MSCs that were intravenously injected into mice with elastase-induced emphysema. The distributions were also compared to the distributions in control mice without emphysema. Methods: We used fluorescence optical imaging with quantum dots (QDs) to track intravenously injected MSCs. In addition, we used a human Alu sequence-based real-time polymerase chain reaction method to assess the lungs, liver, kidney, and spleen in mice with elastase-induced emphysema and control mice at 1, 4, 24, 72, and 168 hours after MSCs injection. Results: The injected MSCs were detected with QD fluorescence at 1- and 4-hour postinjection, and the human Alu sequence was detected at 1-, 4- and 24-hour postinjection in control mice (lungs only). Injected MSCs remained more in mice with elastase-induced emphysema at 1, 4, and 24 hours after MSCs injection than the control lungs without emphysema. Conclusion: In conclusion, our results show that injected MSCs were observed at 1 and 4 hours post injection and more MSCs remain in lungs with emphysema.

Bone Marrow Progenitors and IL-2 Signaling Contribute to the Strain Differences of Kidney Innate Lymphoid Cells

  • Seungwon Ryu;Hye Young Kim
    • IMMUNE NETWORK
    • /
    • v.23 no.2
    • /
    • pp.15.1-15.17
    • /
    • 2023
  • Innate lymphoid cells (ILCs) are critical immune-response mediators. Although they largely reside in mucosal tissues, the kidney also bears substantial numbers. Nevertheless, kidney ILC biology is poorly understood. BALB/c and C57BL/6 mice are known to display type-2 and type-1 skewed immune responses, respectively, but it is unclear whether this extends to ILCs. We show here that indeed, BALB/c mice have higher total ILCs in the kidney than C57BL/6 mice. This difference was particularly pronounced for ILC2s. We then showed that three factors contributed to the higher ILC2s in the BALB/c kidney. First, BALB/c mice demonstrated higher numbers of ILC precursors in the bone marrow. Second, transcriptome analysis showed that compared to C57BL/6 kidneys, the BALB/c kidneys associated with significantly higher IL-2 responses. Quantitative RT-PCR also showed that compared to C57BL/6 kidneys, the BALB/c kidneys expressed higher levels of IL-2 and other cytokines known to promote ILC2 proliferation and/or survival (IL-7, IL-33, and thymic stromal lymphopoietin). Third, the BALB/c kidney ILC2s may be more sensitive to the environmental signals than C57BL/6 kidney ILC2s since they expressed their transcription factor GATA3 and the IL-2, IL-7, and IL-25 receptors at higher levels. Indeed, they also demonstrated greater responsiveness to IL-2 than C57BL/6 kidney ILC2s, as shown by their greater STAT5 phosphorylation levels after culture with IL-2. Thus, this study demonstrates previously unknown properties of kidney ILC2s. It also shows the impact of mouse strain background on ILC2 behavior, which should be considered when conducting research on immune diseases with experimental mouse models.

Ozonated Sunflower Oil (OSO) Alleviates Inflammatory Responses in Oxazolone-Induced Atopic Dermatitis (AD)-Like Mice and LPS- Treated RAW 264.7 Cells

  • Su-Young Kim;Jung Ok Lee;Sue Lee;Jihye Heo;Kyung-Hyun Cho;Ashutosh Bahuguna;Kwang-Ho Yoo;Beom Joon Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.765-773
    • /
    • 2024
  • Ozone, a highly reactive oxidant molecule, is widely used as a complementary therapy for various skin diseases, including wound healing, pressure ulcers, diabetic foot, and infections. However, there is limited research on the effectiveness of ozone for atopic dermatitis (AD). Ozonated sunflower oil (OSO) is an active ingredient obtained from partially ozonated sunflower oil (SO). OSO markedly reduced the LPS-induced increase in IL-1β and nitric oxide (NO) levels in RAW 264.7 mouse macrophage cells. Oxazolone (OXZ) was applied to hairless mice to induce AD-like skin symptoms and immune response. OSO significantly alleviated the OXZ-induced increases in the number of infiltrating mast cells, epidermal thickness, AD symptoms, thymic stromal lymphopoietin (TSLP), and filaggrin, as well as the serum levels of NO, IgE, IL-1β, and TNF-α. Furthermore, OSO inhibited the IL-4/STAT3/MAPK pathway and the expression of NF-κB. Our results suggest that OSO treatment could relieve AD-mediated skin damage through its anti-inflammatory and antioxidant activities. Therefore, it can be used as a therapeutic agent against AD-related skin diseases.

EVALUATION OF ANGIOGENIC PHENOTYPES IN CULTURED HUMAN PERIOSTEAL-DERIVED CELLS UNDER HIGH-DOSE DEXAMETHASONE (고용량의 Dexamethasone 존재하에서 골막기원세포에서 발현되는 혈관신생인자의 평가)

  • Park, Bong-Wook;Choi, Mun-Jeong;Ryu, Young-Mo;Lee, Sung-Gyoon;Hah, Young-Sool;Kim, Deok-Ryong;Cho, Yeong-Cheol;Kim, Jong-Ryoul;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.3
    • /
    • pp.217-224
    • /
    • 2008
  • Angiogenesis plays an important role in bone development and postnatal bone fracture repair. Vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptors (VEGFRs) have been thought to be primarily involved in promoting angiogenesis. It is well known that VEGF and its receptors have been reported to play an important role in the regulation of the interaction between angiogenesis and osteogenesis during bone repair processes. Dexamethasone, a potent synthetic glucocorticoid, promotes phenotype markers of osteoblast differentiation, such as ALP and osteocalcin. It stimulates in vitro osteogenesis of human bone marrow osteogenic stromal cells. Dexamethasone has been reported to suppress VEGF gene expression in some cells. However, our previous study demonstrated VEGF quantification increased in a time-dependent manner in periosteal-derived osteogenesis under dexamethasone. So, the purpose of this study was to examine the angiogenic phenotypes in cultured human periosteal-derived cells under high-dose dexamethasone. Periosteal-derived cells were cultured using a technique previously described. After passage 3, the periosteal-derived cells were further cultured for 28 days in an osteogenic inductive culture medium containing ascorbic acid, ${\beta}$-glycerophosphate and high-dose dexamethasone, We evaluated the expression of VEGF isoforms, VEGFR-1, VEGFR-2, and neuropilin-1, ALL VEGF isoforms ($VEGF_{121},\;VEGF_{165},\;VEGF_{189}$, and $VEGF_{206}$) expression was observed by RT-PCR analysis. VEGFR-1, VEGFR-2 and neuropilin-1 expression increased up to day 14, particularly during the early stage of mineralization. Our results suggest the involvement of direct VEGFs/VEGFRs system on periosteal-derived cells during early mineralization phase under high-dose of dexamethasone. These also suggest that VEGF might act as an autocrine growth molecule during osteoblastic differentiation of cultured human periosteal-derived cells.

Fine Structural Modification of Mouse Ovarian Tissue by Irradiation of 6 MeV LINAC Radiation (6 MeV LINAC 방사선 조사에 의한 생쥐 난소조직의 미세구조 변화)

  • Yoon, Chul-Ho;Moon, Myung-Jin
    • Applied Microscopy
    • /
    • v.33 no.2
    • /
    • pp.117-130
    • /
    • 2003
  • This research investigates the fine structural as well as the morphological changes of the mouse ovarian tissue after irradiation of various dose rates of 6 MeV LINAC radiation. The normal structure of the ovarian tissue is consisted of various stages of follicles including primordial and growing follicles, and ovarian stromal connectives. When we observed the ovarian tissues irradiated with a dose rate of 200 cGy/min using light and electron microscopes, granular cells in growing follicles are in irregular shape unlike normal follicles. Small segments of cells scattered in follicular antrum among granular cells. We could observe neutrophils and macrophages around the segments, which means the cells already got in the process of decease owing to the effects radiation. With coincident to the increase of the dose rate of x-ray irradiation as 400 or 600 cGy/min, the mature follicles appeared as an irregular form and the granular cells surrounding oocyte also deformed comparing to their normal counterparts. The granulosa cells within mature follicle are already occurred necrotic change and apoptosis. The nuclei in some cells got so fragmented that the segments formed the shape of a horseshoe or scattered in small and condensed pieces. All the cells at a granular layer irradiated with a dose rate of 600 cGy/min show typical characteristics of apoptosis. The neutrophils involved in inflammatory reaction appear evidently in follicular antrum of growing follicles, and macrophage scattered with residual and apoptotic bodies.

The Effect of Interleukin $1-{\beta}$, Platelet Derived Growth Factor-BB and Transforming Growth $Factor-{\beta}$ on the expression of PDLs17 mRNA in the Cultured Human Periodontal Ligament Fibroblasts (($IL-1{\beta}$), PDGF-BB 그리고 $TGF-{\beta}$가 사람 배양 치주인대 섬유모세포의 PDLs17 mRNA의 발현에 미치는 영향)

  • Lirn, Ki-Jung;Han, Kyung-Yoon;Kirn, Byung-Ock;Yeorn, Chang-Yeob;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.4
    • /
    • pp.787-801
    • /
    • 2001
  • The molecular mechanisms control the function of PDL(periodonta1 ligament) cells and/or fibroblasts remain unclear. PDLsl7, PDL-specific gene, had previousely identified the cDNA for a novel protein from cultured PDL fibroblasts using subtraction hybridization between gingival fibroblasts and PDL fibroblasts. The purpose of this study was to determine the regulation by growth factors and cytokines on PDLsl7 gene expression in cultured human periodontal ligament cells and observe the immunohistochemical localization of PDLsl7 protein in various tissues of mouse. Primary PDL fibroblasts isolated by scraping the root of the extracted human mandibular third molars. The cells were incubated with various concentration of human recombinant $IL-1{\beta}$, PDGF-BB and TGF\;${\beta}$ for 48h nd 2 weeks. At each time point total RNA was extracted and the levels of transcription ere assessed by reverse transcription-polymerase chain reaction (RT-PCR assay). polyclonal antiserum raised against PDLsl7 peptides, CLSVSYNRSYQINE and SEAVHETDLHDGC, were made, and stained the tooth, periodontium, developing bone, bone marrow and mid-palatal suture of the mouse. The results were as follows. 1. PDLsl7 mRNA levels were increased in response to PDGF (10ng/ml) and $TGF\;{\beta}$(20ng/ml) after treatment of the $IL-1{\beta}$, PDGF-BB and $TGF{\beta}$for 48 h. 2. PDLsl7 was up-regulated only by $TGF{\beta}$(20 ng/ml) after treatment of the $IL-1{\beta}$, PDGF-BB and $TGF\;{\beta}$ for 2 weeks and unchanged by the other stimulants. 3. PDLsl7 was a novel protein coding the 142 amino acid peptides in the ORF and the nucleotide sequences of the obtained cDNA from RT-PCR was exactly same as the nucleotides of the database. 4. Immunohistochemical analysis showed that PDLsl7 is preferentially expressed in the PDL, differentiating osteoblast-like cells and stromal cells of the bone marrow in the adult mouse. 5. The expression of PDLsl7 protein was barely detectable in gingival fibroblasts, hematopoetic cells of the bone marrow and mature osteocytes of the alveolar bone. These results suggest that PDLsl7 might upregulated by PDGF-BB or $TGF{\beta}$ and acts at the initial stage of differentiation when the undifferentiated mesenchymal cells in the bone marrow and PDL differentiate into multiple cell types. However, more research needs to be performed to gain a better understanding of the exact function of PDLsl7 during the differentiation of bone marrow mesenchymal and PDL cells.

  • PDF

Fibroblastic Reticular Cell Derived from Lymph Node Is Involved in the Assistance of Antigen Process (림프절 유래 fibroblastic reticular cell의 효율적 항원처리 관련성에 대한 연구)

  • Kim, Min Hwan;Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1027-1032
    • /
    • 2016
  • Antigen is substance causing disease derived from pathogen. Living organism has the immune system in terms of defense mechanism against antigen. Antigen is processed through several pathways such as phagocytosis, antibody action, complement activation, and cytotoxins by NK or cytotoxic T lymphocyte via MHC molecule. Lymph node (LN) is comprised of the complicated 3 dimensional network and several stromal cells. Fibroblastic reticular cells (FRC) are distributed in T zone for interaction with T cells. FRC produces the extra cellular matrix (ECM) into LN for ECM reorganization against pathogen infections and secretes homing chemokines. However, it has not so much been known about the involvement of the antigen process of FRC. The present report is for the function of FRC on antigen process. For this, FRC was positioned with several infected situations such as co-culture with macrophage, T cell, lipopolysaccharide (LPS) and TNFα stimulation. When co-culture between FRC with macrophage and T cells was performed, morphological change of FRC was observed and empty space between FRCs was made by morphological change. The matrix metallo-proteinase (MMP) activity was up-regulated by Y27632 and T cells onto FRC. Furthermore, inflammatory cytokine, TNFα regulated the expression of adhesion molecules and MHC I antigen transporter in FRC by gene chip assay. NO production was elevated by FRC monolayer co-cultured with macrophage stimulated by LPS. GFP antigen was up-taken by macrophage co-cultured with FRC. Collectively, it suggests that FRC assists of the facilitation of antigen process and LN stroma is implicated into antigen process pathway.

Allergy Immunity Regulation and Synergism of Bifidobacteria (Bifidobacteria의 allergy 면역 조절과 synergism)

  • Cho, Kwang Keun;Choi, In Soon
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.482-499
    • /
    • 2017
  • Allergic diseases have increased over the past several decade worldwide including developing countries. Allergic inflammatory responses are caused by Th (T helper)2 immune responses, triggered by allergen ingestion by antigen presenting cells such as dendritic cells (DCs). Intestinal microorganisms control the metabolism and physiological functions of the host, contribute to early immune system maturation during the early life, and homeostasis and epithelial integrity during life. Bifidobacteria have strain-specific immunostimulatory properties in the Th1/Th2 balance, inhibit TSLP (thymic stromal lymphopoietin) and IgE expression, and promote Flg (Filaggrin) and FoxP3 (Treg) expression to alleviate allergies. In addition, unmethylated CpG motif ODN (oligodeoxynucleotides) is recognized by TLR (toll-like receptors)9 of B cells and plasmacytoid dendritic cells (pDCs) to induce innate and adaptive immune responses, while the butyrate produced by Clostridium butyricum activates the GPR (G-protein coupled receptors)109a signaling pathway to induce the expression of anti-inflammatory gene of pDCs, and directly stimulates the proliferation of thymically derived regulatory T (tTreg) cells through the activation of GPR43 or inhibits the activity of HADC (histone deacetylase) to differentiate naive $CD4^+$ T cells into pTreg cells through the histone H3 acetylation of Foxp3 gene intronic enhancer.