• 제목/요약/키워드: Stromal Vascular Cells

검색결과 37건 처리시간 0.024초

Ginsenoside Rg3 attenuates skin disorders via down-regulation of MDM2/HIF1α signaling pathway

  • Han, Na-Ra;Ko, Seong-Gyu;Moon, Phil-Dong;Park, Hi-Joon
    • Journal of Ginseng Research
    • /
    • 제45권5호
    • /
    • pp.610-616
    • /
    • 2021
  • Background: Thymic stromal lymphopoietin (TSLP) acts as a master switch for inflammatory responses. Ginsenoside Rg3 (Rg3) which is an active ingredient of Panax ginseng Meyer (Araliaceae) is known to possess various therapeutic effects. However, a modulatory effect of Rg3 on TSLP expression in the inflammatory responses remains poorly understood. Methods: We investigated antiinflammatory effects of Rg3 on an in vitro model using HMC-1 cells stimulated by PMA plus calcium ionophore (PMACI), as well as an in vivo model using PMA-induced mouse ear edema. TSLP and vascular endothelial growth factor (VEGF) levels were detected using enzyme-linked immunosorbent assay or real-time PCR analysis. Murine double minute 2 (MDM2) and hypoxia-inducible factor 1α (HIF1α) expression levels were detected using Western blot analysis. Results: Rg3 treatment restrained the production and mRNA expression levels of TSLP and VEGF in activated HMC-1 cells. Rg3 down-regulated the MDM2 expression level increased by PMACI stimulation. The HIF1α expression level was also reduced by Rg3 in activated HMC-1 cells. In addition, Rg3-administered mice showed the decreased redness and ear thickness in PMA-irritated ear edema. Rg3 inhibited the TSLP and VEGF levels in the serum and ear tissue homogenate. Moreover, the MDM2 and HIF1α expression levels in the ear tissue homogenate were suppressed by Rg3. Conclusion: Taken together, the current study identifies new mechanistic evidence about MDM2/HIF1α pathway in the antiinflammatory effect of Rg3, providing a new effective therapeutic strategy for the treatment of skin inflammatory diseases.

Inhibition of Store-Operated Calcium Entry Protects Endothelial Progenitor Cells from H2O2-Induced Apoptosis

  • Wang, Yan-Wei;Zhang, Ji-Hang;Yu, Yang;Yu, Jie;Huang, Lan
    • Biomolecules & Therapeutics
    • /
    • 제24권4호
    • /
    • pp.371-379
    • /
    • 2016
  • Store-operated calcium entry (SOCE), a major mode of extracellular calcium entry, plays roles in a variety of cell activities. Accumulating evidence indicates that the intracellular calcium ion concentration and calcium signaling are critical for the responses induced by oxidative stress. The present study was designed to investigate the potential effect of SOCE inhibition on $H_2O_2$-induced apoptosis in endothelial progenitor cells (EPCs), which are the predominant cells involved in endothelial repair. The results showed that $H_2O_2$-induced EPC apoptosis was reversed by SOCE inhibition induced either using the SOCE antagonist ML-9 or via silencing of stromal interaction molecule 1 (STIM1), a component of SOCE. Furthermore, SOCE inhibition repressed the increases in intracellular reactive oxygen species (ROS) levels and endoplasmic reticulum (ER) stress and ameliorated the mitochondrial dysfunction caused by $H_2O_2$. Our findings provide evidence that SOCE inhibition exerts a protective effect on EPCs in response to oxidative stress induced by $H_2O_2$ and may serve as a potential therapeutic strategy against vascular endothelial injury.

Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials

  • Kim, Jae Ho;Jenrow, Kenneth A.;Brown, Stephen L.
    • Radiation Oncology Journal
    • /
    • 제32권3호
    • /
    • pp.103-115
    • /
    • 2014
  • To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs.

설암에서 신부가화학요법후 미세혈관밀도에 대한 종양관련 대식세포의 역할 (THE ROLE OF TUMOR-ASSOCIATED MACROPHAGES ON MICROVESSEL DENSITY AFTER NEOADJUVANT CHEMOTHERAPY IN TONGUE CANCER)

  • 박봉욱;정인교;김종렬;김욱규;박봉수;김규천;변준호
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제32권3호
    • /
    • pp.209-215
    • /
    • 2006
  • Preoperative neoadjuvant chemotherapy using cisplatin and 5-FU is generally given in oral and maxillofacial cancer. At tissue level both inflammation and fibrosis occur after chemotherapy. The cellular changes mimic those of a granulating wound, with activated macrophages and fibroblasts replacing the malignant cells as they are erradicated. Stromal cells, together with extracellular matrix components, provide the microenvironment that is pivotal for tumor cell growth, invasion, and metastatic progression. Vascular endothelial growth factor(VEGF), an important regulator of angiogenesis in cancer, induces mitogenesis of vascular endothelial cells, and vascular permeabilization and microvessel formation in a tumor are associated with tumor nutrition and oxygenation. Also, they are associated with chemotherapeutic drug delivery. Oxygen delivery to tumor appears to rely on a network of microvessels, On the other hand, the tumor microvessel is clearly an important factor in chemotherapeutic drug delivery to cancer cells, and the efficacy of drug delivery can be high in richly vascularized tumors. So, this study was conducted to evaluate the effect of neoadjuvant chemotherapy on microvessel density from 11 patients with tongue cancers. Our results showed that neoadjuvant chemotherapy was seemed to decrease VEGF expression in tumor cells, however, it did not significantly alter VEGF expression in tumor-associated macrophages. Also, Neoadjuvant chemotherapy had little effect on the microvessel density using CD34, and tumor-associated macrophage level using CD68. Thus, tumorassociated macrophages seem to be the key factor associated with the maintenance of microvessel density after neoadjuvant chemotherapy in tongue cancer.

Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells

  • Lee, Jun Hee;Han, Yong-Seok;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • 제24권3호
    • /
    • pp.260-267
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine.

The contribution of the nervous system in the cancer progression

  • Hongryeol Park;Chan Hee Lee
    • BMB Reports
    • /
    • 제57권4호
    • /
    • pp.167-175
    • /
    • 2024
  • Cancer progression is driven by genetic mutations, environmental factors, and intricate interactions within the tumor microenvironment (TME). The TME comprises of diverse cell types, such as cancer cells, immune cells, stromal cells, and neuronal cells. These cells mutually influence each other through various factors, including cytokines, vascular perfusion, and matrix stiffness. In the initial or developmental stage of cancer, neurotrophic factors such as nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor are associated with poor prognosis of various cancers by communicating with cancer cells, immune cells, and peripheral nerves within the TME. Over the past decade, research has been conducted to prevent cancer growth by controlling the activation of neurotrophic factors within tumors, exhibiting a novel attemt in cancer treatment with promising results. More recently, research focusing on controlling cancer growth through regulation of the autonomic nervous system, including the sympathetic and parasympathetic nervous systems, has gained significant attention. Sympathetic signaling predominantly promotes tumor progression, while the role of parasympathetic signaling varies among different cancer types. Neurotransmitters released from these signalings can directly or indirectly affect tumor cells or immune cells within the TME. Additionally, sensory nerve significantly promotes cancer progression. In the advanced stage of cancer, cancer-associated cachexia occurs, characterized by tissue wasting and reduced quality of life. This process involves the pathways via brainstem growth and differentiation factor 15-glial cell line-derived neurotrophic factor receptor alpha-like signaling and hypothalamic proopiomelanocortin neurons. Our review highlights the critical role of neurotrophic factors as well as central nervous system on the progression of cancer, offering promising avenues for targeted therapeutic strategies.

타액선 종양에서 혈관내피성장인자와 von Willebrand 인자 유전자 발현에 관한 연구 (EXPRESSION OF THE GENES OF VASCULAR ENDOTHELIAL GROWTH FACTOR AND VON WILLEBRAND FACTOR IN SALIVARY GLAND TUMORS)

  • 정지훈;김지혁;박영욱
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제30권1호
    • /
    • pp.41-51
    • /
    • 2008
  • Mucoepidermoid carcinoma (MEC) is the most common malignant salivary gland tumor which compromises about 6$\sim$8% of all tumors followed by the adenoid cystic carcinoma (ACC) and adenocarcinoma. Most deaths from salivary carcinomas are caused by recurrent or metastatic lesions that are resistant to conventional therapy. Therefore, knowledge of cellular properties and tumor-host interactions that influence the vascular metastasis is important for the design of more effective therapy of salivary carcinomas. Neoangiogenesis is essential for tumor growth, which is postulated to be fundamentally dependent on the induction of stromal neovascularization. However, how neovascularization takes place in live tissue has not been fully established, especially in recruitment and differentiation of endothelial cells in the salivary gland tumors. Vascular endothelial growth factor (VEGF) is a heparin-binding, dimeric polypeptide growth factor known to exert its mitogenic activity specifically on endothelial cells. VEGF has been shown th be directly involved in angiogenesis, which in essential for the pathogenesis of many solid tumors. von Willebrand factor (vWF) is a large multimeric protein synthesized by megakaryocytes and endothelial cells that enable platelets to adhere to exposed subendothelium and, as well, to respond to changes in the blood flow. Recent studies suggest that increased levels of vWF correlate with progression of disease, metastasis, or survival time and thus may have a prognostic significance. vWF is explained as an acute phase proteins which is increased in cancer or as a result of increased endothelial cell synthesis associated with tumor-induced angiogenesis. Due to adhesive properties of vWF, its increased concentrations may also contribute metastasis of tumor. In this study, we determined the mRNA expression of VEGF and vWF in salivary ACC, MEC and pleomorphic adenoma by in situ hybridization. As a result, stronger expression of VEGF and vWF was seen in salivary ACC and MEC which has more invasive nature than the salivary benign tumor.

Freeze-dried bovine amniotic membrane as a cell delivery scaffold in a porcine model of radiation-induced chronic wounds

  • Oh, Daemyung;Son, Daegu;Kim, Jinhee;Kwon, Sun-Young
    • Archives of Plastic Surgery
    • /
    • 제48권4호
    • /
    • pp.448-456
    • /
    • 2021
  • Background Locoregional stem cell delivery is very important for increasing the efficiency of cell therapy. Amnisite BA (Amnisite) is a freeze-dried amniotic membrane harvested from bovine placenta. The objective of this study was to investigate the retention of cells of the stromal vascular fraction (SVF) on Amnisite and to determine the effects of cell-loaded Amnisite in a porcine radiation-induced chronic wound model. Methods Initially, experiments were conducted to find the most suitable hydration and incubation conditions for the attachment of SVF cells extracted from pig fat to Amnisite. Before seeding, SVFs were labeled with PKH67. The SVF cell-loaded Amnisite (group S), Amnisite only (group A), and polyurethane foam (group C) were applied to treat radiation-induced chronic wounds in a porcine model. Biopsy was performed at 10, 14, and 21 days post-operation for histological analysis. Results Retaining the SVF on Amnisite required 30 minutes for hydration and 1 hour for incubation. A PKH67 fluorescence study showed that Amnisite successfully delivered the SVF to the wounds. In histological analysis, group S showed increased re-epithelialization and revascularization with decreased inflammation at 10 days post-operation. Conclusions SVFs had acceptable adherence on hydrated Amnisite, with successful cell delivery to a radiation-induced chronic wound model.

Hypoxia Mediates Runt-Related Transcription Factor 2 Expression via Induction of Vascular Endothelial Growth Factor in Periodontal Ligament Stem Cells

  • Xu, Qian;Liu, Zhihua;Guo, Ling;Liu, Rui;Li, Rulei;Chu, Xiang;Yang, Jiajia;Luo, Jia;Chen, Faming;Deng, Manjing
    • Molecules and Cells
    • /
    • 제42권11호
    • /
    • pp.763-772
    • /
    • 2019
  • Periodontitis is characterized by the loss of periodontal tissues, especially alveolar bone. Common therapies cannot satisfactorily recover lost alveolar bone. Periodontal ligament stem cells (PDLSCs) possess the capacity of self-renewal and multilineage differentiation and are likely to recover lost alveolar bone. In addition, periodontitis is accompanied by hypoxia, and hypoxia-inducible $factor-1{\alpha}$ ($HIF-1{\alpha}$) is a master transcription factor in the response to hypoxia. Thus, we aimed to ascertain how hypoxia affects runt-related transcription factor 2 (RUNX2), a key osteogenic marker, in the osteogenesis of PDLSCs. In this study, we found that hypoxia enhanced the protein expression of $HIF-1{\alpha}$, vascular endothelial growth factor (VEGF), and RUNX2 ex vivo and in situ. VEGF is a target gene of $HIF-1{\alpha}$, and the increased expression of VEGF and RUNX2 proteins was enhanced by cobalt chloride ($CoCl_2$, $100{\mu}mol/L$), an agonist of $HIF-1{\alpha}$, and suppressed by 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1, $10{\mu}mol/L$), an antagonist of $HIF-1{\alpha}$. In addition, VEGF could regulate the expression of RUNX2, as RUNX2 expression was enhanced by human VEGF ($hVEGF_{165}$) and suppressed by VEGF siRNA. In addition, knocking down VEGF could decrease the expression of osteogenesis-related genes, i.e., RUNX2, alkaline phosphatase (ALP), and type I collagen (COL1), and hypoxia could enhance the expression of ALP, COL1, and osteocalcin (OCN) in the early stage of osteogenesis of PDLSCs. Taken together, our results showed that hypoxia could mediate the expression of RUNX2 in PDLSCs via $HIF-1{\alpha}$-induced VEGF and play a positive role in the early stage of osteogenesis of PDLSCs.

창상치유목적의 골수기질세포 동종이식을 위한 고분자막의 조건 (Optimal Condition of Microporous Membrane for Bone Marrow Stromal Cell Allotransplantation to Stimulate Wound Healing in Vitro)

  • 이은상;김명주;한승규;홍성택;김우경
    • Archives of Plastic Surgery
    • /
    • 제37권5호
    • /
    • pp.509-518
    • /
    • 2010
  • Purpose: Major drawbacks of conventional bone marrow stromal cells (BSCs) transplantation method are mainly caused by direct transplanted cell to host cell interactions. We hypothesized that separation of the transplanted cells by a microporous membrane might inhibit most of the potential adverse effects and induce superior effect. The purpose of the study is to determine the optimal condition of the microporous membrane. Methods: First, BSCs were placed in polyethylene terephthalate (PET) transwell inserts with 3, 8, or $12{\mu}m$ pore size, and cultured in 24 well culture plates. After 5 days, bottoms of the plates were observed for presence of attached BSCs in monolayer and cell numbers were evaluated. Second, BSCs were placed PET, polycarbonate (PCT), and mixed cellulose esters (MCE) transwell inserts with 3 and $8{\mu}m$ pore size, and cultured in 24 well culture plates. After 3 days, the supernatants of the media left in culture plate were analyzed for collagen, vascular endothelial growth factor (VEGF), platelet derived growth factor BB (PDGF-BB), and basic fibroblast growth factor (bFGF). Third, BSCs were placed in 15% and 70% of the PET membrane with $3{\mu}m$ pore size. All the experimental conditions and methods were same as the second study. Results: The optimal pore sizes to prevent BSC leakage were $3{\mu}m$ and $8{\mu}m$. The amounts of type I collagen and three growth factors tested did not show significant differences among PET, PCT, and MCE groups. However, the collagen, VEGF, and bFGF levels were much higher in the high (70%) density group than in the low (15%) density group. Conclusion: This study revealed that the optimal pore size of membrane to prevent direct BSC to recipient cell contact is in between $3{\mu}m$ and $8{\mu}m$. Membrane materials and pore sizes do not influence the collagen and growth factor passage through the membrane. The most striking factor for collagen and growth factor transport is pore density of the membrane.