• Title/Summary/Keyword: Strip Adjustment

Search Result 29, Processing Time 0.024 seconds

Improvement Scheme of Airborne LiDAR Strip Adjustment

  • Lee, Dae Geon;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.355-369
    • /
    • 2018
  • LiDAR (Light Detection And Ranging) strip adjustment is process to improve geo-referencing of the ALS (Airborne Laser Scanner) strips that leads to seamless LiDAR data. Multiple strips are required to collect data over the large areas, thus the strips are overlapped in order to ensure data continuity. The LSA (LiDAR Strip Adjustment) consists of identifying corresponding features and minimizing discrepancies in the overlapping strips. The corresponding features are utilized as control features to estimate transformation parameters. This paper applied SURF (Speeded Up Robust Feature) to identify corresponding features. To improve determination of the corresponding feature, false matching points were removed by applying three schemes: (1) minimizing distance of the SURF feature vectors, (2) selecting reliable matching feature with high cross-correlation, and (3) reflecting geometric characteristics of the matching pattern. In the strip adjustment procedure, corresponding points having large residuals were removed iteratively that could achieve improvement of accuracy of the LSA eventually. Only a few iterations were required to reach reasonably high accuracy. The experiments with simulated and real data show that the proposed method is practical and effective to airborne LSA. At least 80 % accuracy improvement was achieved in terms of RMSE (Root Mean Square Error) after applying the proposed schemes.

Bundle Adjustment of KOMPSAT-3A Strip Based on Rational Function Model (Rational Function Model 기반 KOMPSAT-3A 스트립 번들조정)

  • Yoon, Wansang;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.565-578
    • /
    • 2018
  • In this paper, we investigate the feasibility of modelling image strips, instead of individual scenes, that have been acquired from the same orbital pass through the process of bundle adjustments. Under this approach, First, a rational function model (RFM) of the strip image is generated from the RFMs of individual images, such that the entire strip of images can be treated as a single image. Correction parameters are calculated through bundle adjustments between strip images. For the experiment, we used two stereo strips. Each strip image consists of three KOMPSAT-3A scenes. Experimental results show that it was possible to improve the initial model by using the control points located in a specific region of the strip. We showed that absolute orientation with moderate accuracy of 2 m errors were achieved from 12 ground control points for the three-image strips. The test results indicate that bundle adjustment of strip images could be more efficient than bundle adjustments of the individual scenes.

Investigation of physical sensor models for orbit modeling

  • Kim, Tae-Jung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.217-220
    • /
    • 2005
  • Currently, a number of control points are required in order to achieve accurate geolocation of satellite images. Control points can be generated from existing maps or surveying, or, preferably, from GPS measurements. The requirement of control points increase the cost of satellite mapping, let alone it makes the mapping over inaccessible areas troublesome. This paper investigates the possibilities of modeling an entire imaging strip with control points obtained from a small portion of the strip. We tested physical sensor models that were based on satellite orbit and attitude angles. It was anticipated that orbit modeling needed a sensor model with good accuracy of exterior orientation estimation, rather then the accuracy of bundle adjustment. We implemented sensor models with various parameter sets and checked their accuracy when applied to the scenes on the same orbital strip together with the bundle adjustment accuracy and the accuracy of estimated exterior orientation parameters. Results showed that although the models with good bundle adjustments accuracy did not always good orbit modeling and that the models with simple unknowns could be used for orbit modeling.

  • PDF

Thickness control in metal-strip milling process (압연 공정에서의 판 두께 제어)

  • 신기현;홍환기;김광배;오상록;안현식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1141-1146
    • /
    • 1993
  • The problem of tension control in metal-strip processing line is discussed. A new mathematical dynamic model which relates tension change, motor-speed change and roll-gap change is developed. Through the computer simulation of this model, parameter sensitivity, the tension transfer phenominon, and static and dynamic characteristics of strip tension were studied. Guidelines are developed to help one selecting locations of the master-speed drive in multi-drive speed control for tension adjustment and reducing the effect of interaction between tension and roll gap control.

  • PDF

Strip Tension Control Considering the Temperature Change in Multi-Span Systems

  • Lee Chang Woo;Shin Kee Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.958-967
    • /
    • 2005
  • The mathematical model for tension behaviors of a moving web by Shin (2000) is extended to the tension model considering the thermal strain due to temperature variation in furnace. The extended model includes the terms that take into account the effect of the change of the Young's Modulus, the thermal coefficient, and the thermal strain on the variation of strip tension. Computer simulation study proved that the extended tension model could be used to analyze tension behaviors even when the strip goes through temperature variation. By using the extended tension model, a new tension control method is suggested in this paper. The key factors of suggested tension control method include that the thermal strain of strip could be compensated by using the velocity adjustment of the helper-rollers. The computer simulation was carried out to confirm the performance of the suggested tension control method. Simulation results show that the suggested tension control logic not only overcomes the problem of the traditional tension control logic, but also improves the performance of tension control in a furnace of the CAL (Continuous Annealing Line).

Strip Adjustment of Airborne Laser Scanner Data Using Area-based Surface Matching

  • Lee, Dae Geon;Yoo, Eun Jin;Yom, Jae-Hong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.6
    • /
    • pp.625-635
    • /
    • 2014
  • Multiple strips are required for large area mapping using ALS (Airborne Laser Scanner) system. LiDAR (Light Detection And Ranging) data collected from the ALS system has discrepancies between strips due to systematic errors of on-board laser scanner and GPS/INS, inaccurate processing of the system calibration as well as boresight misalignments. Such discrepancies deteriorate the overall geometric quality of the end products such as DEM (Digital Elevation Model), building models, and digital maps. Therefore, strip adjustment for minimizing discrepancies between overlapping strips is one of the most essential tasks to create seamless point cloud data. This study implemented area-based matching (ABM) to determine conjugate features for computing 3D transformation parameters. ABM is a well-known method and easily implemented for this purpose. It is obvious that the exact same LiDAR points do not exist in the overlapping strips. Therefore, the term "conjugate point" means that the location of occurring maximum similarity within the overlapping strips. Coordinates of the conjugate locations were determined with sub-pixel accuracy. The major drawbacks of the ABM are sensitive to scale change and rotation. However, there is almost no scale change and the rotation angles are quite small between adjacent strips to apply AMB. Experimental results from this study using both simulated and real datasets demonstrate validity of the proposed scheme.

Analysis of roll deformation for sendzimir rolling mill (젠지미어 압연기 롤 변형해석)

  • 이영호;김종택;한석영;이준정;김종근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1689-1699
    • /
    • 1990
  • Sendzimir rolling mill is widely used for rolling hard materials such as stainless steel due to its small work roll diameter and shape controllability using two effective actuators, AS-U-Roll crown adjustment and lst. intermediate roll shifting. However, in comparison with 4-high or 6-high mills, it is noteasy to get good strip or excellent flatness because Z-mill has small diameter of work rolls which are easily deformed by load. A new mathematical model based on the method of dividing roll and strip into multo-portions was used to develop strip profile prediction software. Using the developed software, several influencing factors related to rolled strip profile for Z-Mill were tested analytically and characterized for the effective shape control. The effects of adjusting shape control actuators of Z-Mill on strip profile were also examined and discussed in detail.

The Optimal Analysis of Circular Strip for Conservation of the Cultural Properties (문화재(文化財) 보존(保存)을 위한 원형(圓形)strip의 최적해석(最適解析))

  • Kang, Joan Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.103-112
    • /
    • 1990
  • For this study, the full-scale model of Chumsungdae was selected as an object, and various photographs were obtained with metric camera for forming circular strips and blocks. The accuracies were analyzed according to the change of object distance and different configuration of control points by bundle adjustment, and the characteristics of results obtained through combined strips were drawn. This thesis suggests optimal analysis technique of cylindrical structures requiring all-side analysis such as cultural properties. As a result, it is possible to use control points positioned on only any one-side for all-side analysis, and control configuration is more important rather than the number of control points for increasing accuracy. In addition, it is desirable to locate control points in X, Y and Z plane uniformly, and it was shown as object distance was shorten and the number of combined strips increases, the accuracy of results was improved considerably.

  • PDF

Electromagnetic Strip Stabilization Control in a Continuous Galvanizing Line using Mixture of Gaussian Model Tuned Fractional PID Controller (비정수 차수를 갖는 비례적분미분제어법과 가우시안 혼합모델을 이용한 연속아연도금라인에서의 전자기 제진제어 기술)

  • Koo, Bae-Young;Won, Sang-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.718-722
    • /
    • 2015
  • This paper proposes a fractional-order PID (Proportional-Integral-Derivative) control used electromagnetic strip stabilization controller in a continuous galvanizing line. Compared to a conventional PID controller, a fractional-order PID controller has integration-fractional-order and derivation-fractional-order as additional control parameters. Thanks to increased control parameters, more precise controller adjustment is available. In addition, accurate transfer function of a real system generally has a fractional-order form. Therefore, it is more adequate to use a fractional-order PID controller than a conventional PID controller for a real world system. Finite element models of a $1200{\times}2000{\times}0.8mm$ strip, which were extracted using a commercial software ANSYS were used as simulation plants, and Gaussian mixture models were used to find optimized control parameters that can reduce the strip vibrations to the lowest amplitude. Simulation results show that a fractional-order PID controller significantly reduces strip vibration and transient response time than a conventional PID controller.

The Effects of Various Apodization Functions on the Filtering Characteristics of the Grating-Assisted SOI Strip Waveguides

  • Karimi, Azadeh;Emami, Farzin;Nozhat, Najmeh
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.101-109
    • /
    • 2014
  • In this paper, four apodization functions are proposed for silicon-on-insulator (SOI) strip waveguides with sidewall-corrugated gratings. The effects of apodization functions on the full width at half maximum (FWHM), the side-lobe level, and the reflectivity of the reflection spectrum are studied using the coupled-mode theory (CMT) and the transfer-matrix method (TMM). The results show that applying proposed apodization functions creates very good filtering characteristics. Among investigated apodized waveguides, the apodization functions of Polynomial and z-power have the best performance in reducing side-lobes, where the side-lobe oscillations are entirely removed. Four functions are also used for precise adjustment of the bandwidth. Simulation results show that the minimum and maximum values of the FWHM are 0.74 nm and 8.48 nm respectively. In some investigated functions, changing the apodization parameters decreases the reflectivity which is compensated by increasing the grating length.