• Title/Summary/Keyword: Stretching process

Search Result 157, Processing Time 0.037 seconds

A Review of Conception and Developmental Process of Stretching in Sports Physical Therapy (스포츠 물리치료에서의 스트레칭의 개념 및 발달과정)

  • Chang Chung-Hoon;Jeong Dong Hyeog;Lee Rae Joon
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.4
    • /
    • pp.423-440
    • /
    • 2002
  • The purpose of this study is to investigate the conception and developmental process of stretching in sports physical therapy. This study is to find conception of stretching, feature and effect, principles and fundamental rule, consideration of enforcement and developmental process in order to use the basic material which is very helpful in the every field and the scene of sports needing stretching. Flexibility is the ability to move muscles and joints through their full ranges of motion. Flexibility is developed by stretching. About player who insufficiency of flexibility, patient and disabled person who restrict of range of motion, older adult who reduce of flexibility, promote of flexibility for upgrading stability and efficiency of body on the based of scientific principles is completed by stretching. The method of stretching has been developed with passive stretching, CR, PNF stretching, PIC stretching, MET stretching in the order. The effects that we can get through stretching are as follows : 1. Enhance physical fitness. 2. Optimize learning, practice and performance of many types of skilled movement. 3. Increase mental and physical relaxation. 4. Promote development of body awareness. 5. Reduce risk of joint sprain or muscle strain. 6. Reduce risk of back problem. 7 Reduce muscular soreness. 8. Reduce the severity of painful menstruation for female athletes. 9. Reduce muscular tension. 10. Advance recognition of body.

  • PDF

Effects of positive and negative stretching on the structure and properties of polyacrylonitrile fibers in the pre-oxidation process

  • Wang, Liang;Lu, Wei;Zhang, Li;Xue, Liwei;Ryu, Seung-Kon;Jin, Ri-guang
    • Carbon letters
    • /
    • v.12 no.2
    • /
    • pp.107-111
    • /
    • 2011
  • Polyacrylonitrile (PAN) fibers were pre-oxidized in a temperature range of 180-275$^{\circ}C$. The effects of positive and negative stretching on the structure and morphology of PAN fiber in the pre-oxidation process were studied by FTIR spectroscopy, XRD, and SEM. Mechanical property changes were also investigated. No changes in the movement and intensity of functional groups of PAN fibers were caused by positive stretching of up to 10% and negative stretching down to -8%. The crystal structure can be affected by the positive stretching and negative stretching. The maximum strength is 479.81 MPa when the stretching is positive, and the maximum strength is 420.55 MPa when the stretching is negative.

Influence of Process Parameters on the Breathable Film Strength of Polymer Extrusion (고분자압출의 공정변수가 통기성필름강도에 미치는 영향)

  • Choi, Man-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.625-632
    • /
    • 2012
  • Optimization of process parameters in polymer extrusion is an important task to reduce manufacturing cost. To determine the optimum values of the process parameters, it is essential to find their influence on the strength of polymer breathable thin film. The significance of six important process parameters namely, extruder cylinder temperature, extruder speed, extruder dies temperature, cooling roll temperature, stretching ratio, stretching roll temperature on breathable film strength of polymer extrusion was determined. Moreover, this paper presents the application of Taguchi method and analysis of variance (ANOVA) for maximization of the breathable film strength influenced by extrusion parameters. The optimum parameter combination of extrusion process was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that extruder speed and stretching ratio were the most influential factor on the film strength, respectively. The best results of film strength were obtained at higher extruder speed and stretching ratio.

FORMABILITY OF COMBINED STRETCHING PROCESSES WITH SIMULTANEOUS COMPRESSION

  • Muranaka T.;Goto Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.193-197
    • /
    • 2003
  • In order to restrain the local necking during stretching of sheet metals, the combined stretching processes with simultaneous compression are proposed. The combined stretching tests with two types of compression to top of the cup were carried out using the pure aluminum sheets; (1) stroke control loading process and (2) pinpoint loading process. It was clarified that the metal flow in the cross-section of the cup is affected significantly both by the magnitude of load and the stroke in the compression process. It was also found that the local necking can be restrained effectively by the metal flow from center of the cup and therefore the forming limit is improved.

  • PDF

Experimental Study of Moisture Vapor Transmission Rate(MVTR) for Breathable Film (통기성필름의 투습도에 관한 실험적 연구)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.81-86
    • /
    • 2016
  • Moisture vapor transmission rate (MVTR) is an important item for many applications of polymer breathable thin film. To determine the optimum values of the process parameters, it is essential to find their influence on The significance of six important process parameters namely, extruder cylinder temperature, extruder speed, extruder dies temperature, cooling roll temperature, stretching ratio, stretching roll temperature on breathable film strength of polymer extrusion was determined. Moreover, this paper presents the application of Taguchi method and analysis of variance (ANOVA) for maximization of the breathable film MVTR influenced by extrusion parameters. The optimum parameter combination of extrusion process was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that extruder speed and stretching ratio were the most influential factor on the film strength, respectively. The best results of film MVTR were obtained at higher extruder speed and stretching ratio.

Structure Variation of Polypropylene Hollow Fiber Membrane with Operation Parameters in Stretching Process (연신 공정 조업변수에 따른 폴리프로필렌 중공사막의 구조 변화)

  • Lee Gyu-Ho;Kim Jin-Ho;Song Ki-Gook;Kim Sung-Soo
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.175-181
    • /
    • 2006
  • Hybrid process of thermally-induced phase separation and stretching was developed for the preparation of microporous polypropylene hollow fiber membranes. Precursor for stretching was prepared by using soybean oil as a diluent and benzoic acid as a nucleating agent far the sphenlite control and it was stretched far the micrporous hollow fiber membrane. The effects of stretching ratio and deformation rate for stretching process were investigated. Increase of stretching ratio resulted in the greater pore size with nonuniform size distribution. Higher deformation rate also increaser the pore size with uniform size distribution. Stretching ratio was closely related with the orientation of polymer chain and increased the mechanical strength of the fiber. Increase of deformation rate had little effects on the orientation of crystalline phase, and decreased the orientation of amorphous phase which caused the decrease of tensile strength of the fiber and broke the micro-fibrils connecting spherulites to form a circular pore shape.

Strain Evolution in High-Mn Steel Ellipsoidal Vessel Head during Multi-forming Process: A Finite Element Analysis (다단 성형 공정 시 고-Mn 강의 타원형 용기 헤드에서의 변형률 분포: 유한요소해석)

  • Preetham Alluri;Lalit Kaushik;Shi-Hoon Choi
    • Transactions of Materials Processing
    • /
    • v.32 no.5
    • /
    • pp.268-275
    • /
    • 2023
  • ISO 21029 cryogenic vessel is used to transport cryogenic fluids. High-manganese steel (High-Mn steel) is widely regarded as suitable for use at cryogenic temperatures. The conventional way of manufacturing an ellipsoidal vessel head involves incremental stretching, followed by a spinning process. In this study, an alternative method for forming an ellipsoidal vessel head was proposed. Finite element analysis (FEA) was used to theoretically examine the strain evolution during a multi-stage forming process, which involved progressive stretching, deep drawing, and spinning of High-Mn steel. The distribution of effective strain and strain components were analyzed at different regions of the formed part. The FEA results revealed that only normal strains were evident in the dished region of the vessel head due to the stretching process. However, the flange region experienced complex strain evolution during the subsequent deep drawing and spinning process.

A study on the development of high strength for acryl fiber during uniaxial stretching by swell-wet process (팽윤습열연신에 의한 아크릴섬유의 고강도화에 관한 연구)

  • Song, Kyoung-Hun;Lee, Mun-Soo
    • The Journal of Natural Sciences
    • /
    • v.8 no.1
    • /
    • pp.145-151
    • /
    • 1995
  • The stretching of synthetic fibers by hot dry process is very difficult, because these fibers have high glass transition temperature at above $150^{\circ}C$. But, we used a swell-wet stretching precess; the fibers are stretched in a swelling agent such as organic solvents at lower temperature. In this study, 100% acryl fibers were uniaxially stretched with free width at $70^{\circ}C$ by swell-wet process in organic solvents. The stretchability was estimated by stretching work. This work is concerned with stretching stress and strain, and initial modulus. We found that it is a good parameter for the estimatation of high strength to the acrylic fiber. The effects of stretching conditions on the molecular orientation for high strength and mechanical properties of PAN fibers were measured.

  • PDF

The Effect of Soleus Passive Stretching on the Range of Motion of the Ankle Joint

  • Hwang, Hyun Sook;Choi, Jung Hyun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.7 no.1
    • /
    • pp.919-924
    • /
    • 2016
  • In this study, 20 men and women in their 20s were divided into a footboard passive stretching group and a manual passive stretching group. After stretching was applied to the soleus for 5 weeks, a comparative analysis was performed on the range of motion(ROM) of the ankle joint to determine changes in the flexibility of the soleus. Both the footboard stretching group and manual stretching group first performed stretching for 15 sec, followed by a 10-sec break. One set consisted of performing the above process twice consecutively, and each group had to perform five sets in total. A goniometer was used as a measuring instrument. The results of the experiment were analyzed using a nonparametric analysis, Wilcoxon signed rank test, and Mann-Whitney test. SPSS WIN 18.0 was employed for the statistical analysis. In terms of the comparison of the flexibility before and after the experiment according to the different interventions, the application of footboard stretching to the soleus for 5 weeks resulted in $3.2^{\circ}$ right dorsiflexion (p=.009), $6.98^{\circ}$ right plantar flexion(p=.008), $4.14^{\circ}$ left dorsiflexion(p=.005), and $10.97^{\circ}$ left plantar flexion(p=.007), which were all statistically significant increases. The application of manual stretching led to $6.04^{\circ}$ right dorsiflexion(p=.005), $12.14^{\circ}$ right plantar flexion(p=.005), $7.00^{\circ}$ left dorsiflexion (p=.008), and $16.38^{\circ}$ left plantar flexion(p=.005). Therefore, both footboard stretching and manual stretching were effective in enhancing the flexibility of the soleus. However, statistically significant larger increases in the ROM of the ankle joint were observed in the manual stretching group.

Simultaneous Measurements of Stress and Birefringence Development during Extensional Deformation of Cyclic Olefin Copolymer

  • Yagisawa, Yusuke;Ito, Hiroshi;Kikutani, Takeshi
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.361-361
    • /
    • 2006
  • To clarify the structure development of cyclic olefin copolymers in stretching and relaxation processes, on-line measurements of optical retardation and tensile force were performed. Birefringence increased continuously whereas stress showed yielding at stretching temperatures of $160^{\circ}C$. At $170^{\circ}C$, stress yielding was not observed and stress and birefringence increased monotonously with an increase in the strain. In the relaxation process, stress and birefringence decreased monotonously at all the temperatures examined. The slope for the stress vs. birefringence relation at initial stage of stretching increased with an increase in temperature, whereas that for the relaxation stage was significantly larger that for the stretching process, and therefore showed a significant hysteresis.

  • PDF