• Title/Summary/Keyword: Stretching Process

Search Result 160, Processing Time 0.026 seconds

Formation of Coherent Vortices in Late Wake Downstream of an Object in Weakly Stratified Fluid (약한 밀도 층상류에서 발생하는 물체 후류의 잔류와 응집 와류의 형성)

  • Lee, Sung-Su;Kim, Hak-Sun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.414-420
    • /
    • 2011
  • Decades of studies of geophysical flow have unveiled that the flow downstream of obstacles in stratified flow consists of attached wake and strong gravity waves, or separated, fluctuating wake and persistent late wakes. Among unique and interesting characteristics of the stratified flow past obstacles is the generation of coherent vortex in the late wake far downstream of the object. Unlike in homogeneous fluid, the flow field downstream self-develops coherent vortex even after diminishing of the near wake, no matter how small the stratification is. This paper present a computational approach to simulate the generation of the coherent vortex structure in the late wake of a moving sphere submerged in weakly stratified fluid. The results are in consistent with several experimental observations and the vortex stretching mechanism is employed to explain the process of coherence.

Multi-scale coherent structures and their role in the energy cascade in homogeneous isotropic turbulence

  • Goto, Susumu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.355-358
    • /
    • 2008
  • In order to investigate the physical mechanism of the energy cascade in homogeneous isotropic turbulence, we introduce Galilean-invariant energy and its transfer rate in the real space as a function of position, time and scale. By using a database of direct numerical simulations (DNS) of homogeneous isotropic turbulence, it is shown that (i) fully developed turbulence consists of multi-scale coherent vortices of tubular shapes, (ii) the energy at each scale is mainly confined in vortex tubes with the radii of the same order of the length scale, and (iii) the energy transfer takes place around pairs (especially, anti-parallel pairs) of such vortex tubes. Based on these observations, it is suggested that the energy cascade can be caused, in the real space, by the process of the stretching and creation of smaller (i.e. thinner) vortex tubes by the straining field around pairs of larger (i.e. fatter) vortex tubes. Indeed, it is quite easy to find such events (in our DNS fields) which strongly support this scenario of the energy cascade.

  • PDF

Numerical Study of Coherent Vortex in Late Wake Downstream of a Sphere in Weakly Stratified Fluid (잔류내 응집 와류의 수치 해석)

  • Lee, Sung-Su;Lee, Young-Kyu;Yang, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1863-1868
    • /
    • 2003
  • Decades of studies of geophysical flow have unveiled that the flow downstream of obstacles in stratified flow consists of attached wake and strong internal waves, or separated, fluctuating wake and persistent late wakes. Among unique and interesting characteristics of the stratified flow past obstacles is the generation of coherent vortex the late wake far downstream of the object. Unlike in homogeneous fluid, the flow field downstream self-develops coherent vortex even after diminishing of the near wake, no matter how small the stratification is. This paper present a computational approach to simulate the generation of the coherent vortex structure in late wake of a moving sphere submerged in weakly stratified fluid. The results are in consistent with several experimental observations and the vortex stretching mechanism is employed to explain the process of coherence.

  • PDF

Multi-scale coherent structures and their role in the energy cascade in homogeneous isotropic turbulence

  • Goto, Susumu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.355-358
    • /
    • 2008
  • In order to investigate the physical mechanism of the energy cascade in homogeneous isotropic turbulence, we introduce Galilean-invariant energy and its transfer rate in the real space as a function of position, time and scale. By using a database of direct numerical simulations (DNS) of homogeneous isotropic turbulence, it is shown that (i) fully developed turbulence consists of multi-scale coherent vortices of tubular shapes, (ii) the energy at each scale is mainly confined in vortex tubes with the radii of the same order of the length scale, and (iii) the energy transfer takes place around pairs (especially, anti-parallel pairs) of such vortex tubes. Based on these observations, it is suggested that the energy cascade can be caused, in the real space, by the process of the stretching and creation of smaller (i.e. thinner) vortex tubes by the straining field around pairs of larger (i.e. fatter) vortex tubes. Indeed, it is quite easy to find such events (in our DNS fields) which strongly support this scenario of the energy cascade.

  • PDF

Some Remarks on the Experiment and Finite Element Analysis to Evaluate to Forming Limit of Sheet Metals (금속판재의 성형성 평가를 위한 실험 및 유한요소해석에 관한 고찰)

  • 곽인구;신용승;김형종;김헌영
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.379-388
    • /
    • 2000
  • This study aims to examine the influence of experimental and numerical factors on the results of the test and finite element simulation to evaluate the formability of sheet metals. The stretch-forming test with a hemispherical punch is carried out to obtain the limiting dome height (LDH) and forming limit diagram (FLD) for several kinds of aluminium and steel sheet. The results of the LDH and FLD tests are analysed to find any correlation with the uniaxial tensile properties. It proves that the size of the prescribed grid has great influence on the measured value of strain. The finite element analysis of the punch stretching process is also carried out and the result is compared with the experimental data. The influence of the numerical parameters such as friction coefficient, element size and anisotropy model on the simulation results tms out to be very considerable.

  • PDF

Anisotropic Elasto-Viscoplastic Finite Element Analysis for Polycrystalline Materials (다결정재의 이방성 탄.점소성 유한요소해석)

  • 이용신;김응주
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.71-76
    • /
    • 1997
  • The deformations of polycrystalline materials are modelled by linking a constitutive equation for the crystallographic slip of a single crystal to the macroscopic behavior of the aggregate. In this study, anisotropic elasticity (lattice stretching) of a cubic crystal is incoporated into the anisotropic plasticity from crystallographic slip. The constitutive description for the aggregate, derived from a crystal plasticity theory, is used to formulate a Consistent Penalty Finite Element Method for the anisotropic elasto-viscoplastic deformation of polycrystalline materials. As an application, a plane-strain forging process is simulated and the effects of the initial textures on the deformation behavior of the workpiece are examined.

  • PDF

Fabrication of Large-Area Photovoltaic Crystal with Modified Surface Using Trimethoxysilyl Propyl Methacrylate (TMSPM) for Solar Cell Protection

  • Kang, Kwang-Sun
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.84-87
    • /
    • 2014
  • Protection of solar cell surface is important to prevent from dust, pollen, sand, etc. Therefore, development of large area antifouling film is urgent for high performance of solar cells. The surface of silica spheres was modified to fabricate large area antifouling film. The surface of monodisperse silica spheres has been modified with 3-(trimethoxysilyl) propylmethacrylate (TMSPM) to fabricate large area photonic crystal. Although the surface modification of silica spheres with TMSPM has been failed for the base catalyst, the second trial using acid catalyst showed the following results. The FTIR absorption peak at $1721cm^{-1}$ representing C=O stretching vibration indicates that the TMSPM was attached on the surface of silica spheres. The methanol solution comprised of the surface modified silica spheres (average diameter of 380 nm) and a photoinitiator was poured in the patterned silicon wafer with the dimension of 10 cm x 10 cm and irradiated UV-light during the self-assembly process. The result showed large area crack and defect free nanostructures.

Physiological Activities Exerted by Various Growth Regulators, Ca and K ion on Elongation of Soybean Hypocotyl Segments (대두유축신장에 미치는 각종생장 조절물질과 석탄 및 가리의 생리적작용에 대하여)

  • 곽병화
    • Journal of Plant Biology
    • /
    • v.11 no.1
    • /
    • pp.22-26
    • /
    • 1968
  • Hypocotyl segments of shade-grown soybean sprouts(var. Kumdo) were floated in solutions of various substances at physiological levels and grown for either 24 hours at 28$^{\circ}C$ or 72 hours at $25^{\circ}C$. Increased length of the segments beyond 20mm (the original length) was obtained as a measure of the present studies. At the room temperature, Ca and DNP strongly inhibited elongation of the hypocotyl segments, whereas K, IAA, GA and EDTA in general promoted it. There were, however, no such differences in the effects at relatiely low temperature. This indicated that the elongation process not only involves stretching of wall materials, but also does synthesis of the materials. Ca was found to be antagonistic to the promotive action of GA in the elongation, and the IAA action involves metabolic energy. EDTA seemed to act as a widely known chelator removing Ca already existed in the hypocotyl tissue, thus shwoed a promotion in the elongation.

  • PDF

A Study on the Forming Limit Diagram Tests of Metal Sheets (금속 판재의 성형한계도 시험법에 관한 연구)

  • Jang, Uk-Kyeong;Jang, Yun-Ju;Kim, Hyung-Jong
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.49-57
    • /
    • 2010
  • A forming limit diagram (FLD) defines the extent to which specific sheet material can be deformed by drawing, stretching or any combination of those two. To determine the forming limit curve (FLC) accurately, it is necessary to perform the tests under well-organized conditions. In this study, the influence of several geometric or process parameters such as the blank shape and dimensions, strain measuring equipments, test termination time, forming speed and lubricants on the FLC is investigated.

  • PDF

Development of Registration Method of Panel and Mask for FTM Tube (FTM 튜브의 판넬과 마스크의 일치방법 개발)

  • Yun, Jong-Soon;Jung, Jong-Yun
    • IE interfaces
    • /
    • v.11 no.2
    • /
    • pp.107-117
    • /
    • 1998
  • This paper presents a useful method of registration in manufacturing of shadow color mask for cathode ray tubes of the FTM (Flat Tension Mask) type, wherein the shadow mask and front panel are interchangeable when mask-panels are assembled, which is called ICM system. Theoretical analysis and alignment process are presented. The pattern of mask aperture is registered with a screen pattern of corresponding geometry of the panel in flat tension mask tube. Registration accuracy of panel and mask affects the purity of color cathode ray tube concerned with mislanding. It tries to minimize the misregistration caused by variances, which are mechanical error, mask stretching position error, restrictive number of fiducial point, etc.

  • PDF