• Title/Summary/Keyword: Stress-strength

Search Result 5,797, Processing Time 0.03 seconds

An Analytical Study on the Seismic Behavior and Safety of Vertical Hydrogen Storage Vessels Under the Earthquakes (지진 시 수직형 수소 저장용기의 거동 특성 분석 및 안전성에 관한 해석적 연구)

  • Sang-Moon Lee;Young-Jun Bae;Woo-Young Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.152-161
    • /
    • 2023
  • In general, large-capacity hydrogen storage vessels, typically in the form of vertical cylindrical vessels, are constructed using steel materials. These vessels are anchored to foundation slabs that are specially designed to suit the environmental conditions. This anchoring method involves pre-installed anchors on top of the concrete foundation slab. However, it's important to note that such a design can result in concentrated stresses at the anchoring points when external forces, such as seismic events, are at play. This may lead to potential structural damage due to anchor and concrete damage. For this reason, in this study, it selected an vertical hydrogen storage vessel based on site observations and created a 3D finite element model. Artificial seismic motions made following the procedures specified in ICC-ES AC 156, as well as domestic recorded earthquakes with a magnitude greater than 5.0, were applied to analyze the structural behavior and performance of the target structures. Conducting experiments on a structure built to actual scale would be ideal, but due to practical constraints, it proved challenging to execute. Therefore, it opted for an analytical approach to assess the safety of the target structure. Regarding the structural response characteristics, the acceleration induced by seismic motion was observed to amplify by approximately ten times compared to the input seismic motions. Additionally, there was a tendency for a decrease in amplification as the response acceleration was transmitted to the point where the centre of gravity is located. For the vulnerable components, specifically the sub-system (support columns and anchorages), the stress levels were found to satisfy the allowable stress criteria. However, the concrete's tensile strength exhibited only about a 5% margin of safety compared to the allowable stress. This indicates the need for mitigation strategies in addressing these concerns. Based on the research findings presented in this paper, it is anticipated that predictable load information for the design of storage vessels required for future shaking table tests will be provided.

Assessment of Methane Production Rate Based on Factors of Contaminated Sediments (오염퇴적물의 주요 영향인자에 따른 메탄발생 생성률 평가)

  • Dong Hyun Kim;Hyung Jun Park;Young Jun Bang;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.45-59
    • /
    • 2023
  • The global focus on mitigating climate change has traditionally centered on carbon dioxide, but recent attention has shifted towards methane as a crucial factor in climate change adaptation. Natural settings, particularly aquatic environments such as wetlands, reservoirs, and lakes, play a significant role as sources of greenhouse gases. The accumulation of organic contaminants on the lake and reservoir beds can lead to the microbial decomposition of sedimentary material, generating greenhouse gases, notably methane, under anaerobic conditions. The escalation of methane emissions in freshwater is attributed to the growing impact of non-point sources, alterations in water bodies for diverse purposes, and the introduction of structures such as river crossings that disrupt natural flow patterns. Furthermore, the effects of climate change, including rising water temperatures and ensuing hydrological and water quality challenges, contribute to an acceleration in methane emissions into the atmosphere. Methane emissions occur through various pathways, with ebullition fluxes-where methane bubbles are formed and released from bed sediments-recognized as a major mechanism. This study employs Biochemical Methane Potential (BMP) tests to analyze and quantify the factors influencing methane gas emissions. Methane production rates are measured under diverse conditions, including temperature, substrate type (glucose), shear velocity, and sediment properties. Additionally, numerical simulations are conducted to analyze the relationship between fluid shear stress on the sand bed and methane ebullition rates. The findings reveal that biochemical factors significantly influence methane production, whereas shear velocity primarily affects methane ebullition. Sediment properties are identified as influential factors impacting both methane production and ebullition. Overall, this study establishes empirical relationships between bubble dynamics, the Weber number, and methane emissions, presenting a formula to estimate methane ebullition flux. Future research, incorporating specific conditions such as water depth, effective shear stress beneath the sediment's tensile strength, and organic matter, is expected to contribute to the development of biogeochemical and hydro-environmental impact assessment methods suitable for in-situ applications.

Optimization for Underwater Welding of Marine Steel Plates (선박용 강판의 수중 용접 최적화에 관한 연구)

  • 오세규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 1984
  • Optimizing investigation of characteristics of underwater welding by a gravity type arc welding process was experimentally carried out by using six types of domestic coated welding electrodes for welding of domestic marine structural steel plates (KR Grade A-1, SWS41A, SWS41B,) in order to develop the underwater welding techniques in practical use. Main results obtained are summarized as follows: 1. The absorption speed of the coating of domestic coated lime titania type welding-electrode became constant at about 60 minutes in water and it was about 0.18%/min during initial 8 minutes of absorption time. 2. Thus, the immediate welding electrode could be used in underwater welding for such a short time in comparison with the joint strength of in-atmosphere-and on-water-welding by dry-, wet-or immediate-welding-electrode. 3. By bead appearance and X-ray inspection, ilmenite, limetitania and high titanium oxide types of electrodes were found better for underwater-welding of 10 mm KR Grade A-1 steel plates, while proper welding angle, current and electrode diameter were 6$0^{\circ}C$, above 160A and 4mm respectively under 28cm/min of welding speed. 4. The weld metal tensile strength or proof stress of underwater-welded-joints has a quadratic relationship with the heat input, and the optimal heat input zone is about 13 to 15KJ/cm for 10mm SWS41A steel plates, resulting from consideration upon both joint efficiency of above-100% and recovery of impact strength and strain. Meanwhile, the optimal heat input zone resulting from tension-tension fatigue limit above the base metal's of SWS41A plates is 16 to 19KJ/cm. Reliability of all the empirical equations reveals 95% confidence level. 6. The microstructure of the underwater welds of SES41A welded in such a zone has no weld defects such as hydrogen brittleness with supreme high hardness, since the HAZ-bond boundary area adjacent to both surface and base metal has only Hv400 max with the microstructure of fine martensite, bainite, pearlite and small amount of ferrite.

  • PDF

THE EFFECTS OF MECHANICAL AND THERMAL FATIGUE ON THE SHEAR BOND STRENGTH OF ORTHODONTIC ADHESIVES (기계적 및 열적 피로가 교정용 접착제의 결합강도에 미치는 영향)

  • Shin, Wan-Cheal;Kim, Jong-sung;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.26 no.2 s.55
    • /
    • pp.175-186
    • /
    • 1996
  • The purpose of this study was to examine the effects of mechanical and thermal fatigue on the shear bond strength(SBS) of stainless steel mesh brackets bonded to human premolar teeth with 3 no-mix adhesives. The stainless steel mesh bracket was Ormesh(Ormco, .022 slot) and three types of no-mix adhesives were Ortho-one(Bisco), $Monolok^2$(RMO), $System\;1^+$(Ormco). The $10^6$ loadcycles of $17.4{\times}10^2sin2{\pi}ftlg{\cdot}cm$ and the 1,000 thermocycles of 15 second dwell time in each bath of $5^{\circ}C\;and\;55^{\circ}C$ were acturated as mechanical and thermal fatigue stress, and SBS were measured after each fatigue test. The fracture sites were analyzed by stereoscope and scanning electron microscope. The results obtained were summarized as follows; 1. Before thermocycles, $Monolok^2$ showed the highest Knoop hardness number(KHN, $64.03kg/mm^2$) and $System\;1^+$ showed the lowest value($31.60kg/mm^2$). After thermocycling, $Monolok^2$ also showed the highest KHN($38.03kg/mm^2$) and $system\;1^+$ showed the minimum($20.87kg/mm^2$). The KHN of Ortho-one, $Monolok^2,\;System\;1^+$ significantly decreased after thermocycling (P<0.01). 2. In static shear bond test, three adhesives had no significant differences in the SBS(P>0.01). 3. After thermocycling test, $Monolok^2$ showed the maximum SBS($19.34{\pm}2.75MPa$) and Ortho-one showed the minimum SBS($13.66{\pm}2.23MPa$). The SBS of Ortho-one(P<0.01) and $System\;1^+$(P<0.05) significantly decreased after $10^3$ thermocycles. 4. The SBS of three adhesives after $10^6$ loadcycles were similar and were not significantly decreased compared with static group(P>0.01). 5. The failure sites were usually bracket/resin interface in all groups irrespective of experimental conditions.

  • PDF

Mock-up Test of Temperature Crack Reduction Method Application by Setting Time Control of Mat Foundation Mass Concrete (응결시간조정에 의한 매트기초 매스 콘크리트의 온도균열저감 공법적용의 Mock-up Test)

  • Han, Cheon-Goo;Lee, Jae-Sam;Noh, Sang-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.55-61
    • /
    • 2009
  • Recently, the number of high-rise buildings being built in Korea by major construction companies for residential and commercial use has been increasing. When constructing a high-rise building, it is necessary to apply massive amounts of concrete to form a mat foundation that can withstand the huge load of the upper structure. However, it is of increasing concern that due to limitations in terms of the amount of placing equipment, available job-sites and systems for mass concrete placement in the construction field, it is not always possible to place a great quantity of concrete simultaneously in a large-scale mat foundation, and for this reason consistency between placement lift cannot be secured. In addition, a mat foundation Is likely to crack due to the stress caused by differences inhydration heat generation time. To derive a solution for these problems, this study provides test results of a hydration heat crack reduction method by applying placement lift change and setting time control with a super retarding agent for mass concrete in a large-scale mat foundation. Mock-up specimens with different mixtures and placement liftswere prepared at the job-site of a newly-constructed high-rise building. The test results show that slump flow of concrete before and after adding the super retarding agent somewhat Increases as the target retarding time gets longer, while the air content shows no great difference. The setting time was observed to be retarded as the target retarding time gets longer. As the target retarding time gets longer, compressive strength appears to be decreased at an early stage, but as time goes by, compressive strength gets higher, and the compressive strength at 28 days becomes equal or higher to that of plain concrete without a super retarding agent. For the effect of placement lift change and super retarding agent on the reduction of hydration heat, the application of 2 and 4 placement lifts and a super retarding agent makes it possible to secure consistency and reduce temperature difference between placement lifts, while also extending the time to reach peak temperature. This implies that the possibility of thermal crack induced by hydration heat is reduced. The best results are shown in the case of applying 4 placement lifts.

Comparison of Anesthetic Tolerance between the Wild and Cultured Fish, Black Seabream Acanthopagrus schlegeli Juvenile (감성돔 자연산 치어와 양식산 치어의 마취 내성 비교)

  • Son, Maeng-Hyun;Lim, Han-Kyu
    • Journal of Aquaculture
    • /
    • v.21 no.4
    • /
    • pp.304-308
    • /
    • 2008
  • Strength of juvenile black seabream (Acanthopagrus schlegeli) produced in the different types of hatchery for wild stock enhancement was evaluated in terms of resistances against anesthetizing agent, tricaine methane sulfonate (MS-222), and dry exposure. The working dosages of MS-222 varied significantly with two different water temperature and hatchery populations. Namely, water temperature $22^{\circ}C$ populations were less resistant against the chemical over water temperature $12^{\circ}C$ ones. MS-222 effects also differed with the fish with different growth histories. The fish seeds in collected from wild showed stronger resistances, earlier recoveries, and lower mortalities, compared to those cultured in land-based tank. Similar results were achieved in the juveniles challenged to dry exposure. These results suggest that wild population of black seabream are more resistant against anesthetic stress, expressed as anesthesia, recovery, and mortality, and further that the population are "healthier" than others.

A Study on Moment Gradient Factor for Inelastic Lateral-Torsional Buckling Strength of Stepped I-Beam Subjected to Linear Moment Gradient (선형 모멘트 하중을 받는 계단식 단면변화 I형보의 비탄성 횡-비틀림 좌굴강도산정을 위한 모멘트 구배계수 연구)

  • Park, Jong-Sup;Son, Ji-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.53-60
    • /
    • 2008
  • The cross-sections of continuous multi-span beams sometimes suddenly increase, or become stepped, at the interior supports of continuous beams to resist high negative moments. The three-dimensional finite-element program ABAQUS (2007) was used to analytically investigate the inelastic lateral-torsional buckling behavior of stepped beams subjected to linear moment gradient and resulted in the development of design equations. The ratios of the flange thickness, flange width, and stepped length of beam are considered for the analytical parameters. Two groups of 27 cases and 36 cases, respectively, were analyzed for doubly and singly stepped beams in the inelastic buckling range. The combined effects of residual stresses and geometrical imperfection on inelastic lateral-torsional buckling of beams are considered. First, the distributions of residual stress of the cross-section is same as shown in Pi and Trahair (1995), and the initial geometric imperfection of the beam is set by central displacement equal to 0.1% of the unbraced length of beam. The new proposed equations definitely improve current design methods for the inelastic lateral-torsional buckling problem and increase efficiency in building and bridge design.

Seismic Performance of Precast Infill Walls with Strain-Hardening Cementitious Composites (변형경화형 시멘트 복합체를 사용한 프리캐스트 끼움벽의 내진성능)

  • Kim, Sun-Woo;Yun, Hyun-Do;Jang, Gwang-Soo;Yun, Yeo-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.327-335
    • /
    • 2009
  • In the seismic region, non-ductile structures often form soft story and exhibit brittle collapse. However, structure demolition and new structure construction strategies have serious problems, as construction waste, environmental pollution and popular complain. And these methods can be uneconomical. Therefore, to satisfy seismic performance, so many seismic retrofit methods have been investigated. There are some retrofit methods as infill walls, steel brace, continuous walls, buttress, wing walls, jacketing of column or beam. Among them, the infilled frames exhibit complex behavior as follows: flexible frames experiment large deflection and rotations at the joints, and infilled shear walls fail mainly in shear at relatively small displacements. Therefore, the combined action of the composite system differs significantly from that of the frame or wall alone. Purpose of research is evaluation on the seismic performance of infill walls, and improvement concept of this paper is use of SHCCs (strain-hardening cementitious composites) to absorb damage energy effectively. The experimental investigation consisted of cyclic loading tests on 1/3-scale models of infill walls. The experimental results, as expected, show that the multiple crack pattern, strength, and energy dissipation capacity are superior for SHCC infill wall due to bridging of fibers and stress redistribution in cement matrix.

Single Carbon Fiber/Acid-Treated CNT-Epoxy Composites by Electro-Micromechanical Technique and Wettability Test for Dispersion and Self-Sensing (젖음성 시험과 전기-미세역학 시험법과 통한 단 카본섬유/산처리된 CNT-에폭시 나노복합재료의 분산과 자체-감지능)

  • Jang, Jung-Hoon;Wang, Zuo-Jia;GnidaKouong, Joel;Gu, Ga-Young;Park, Joung-Man;Lee, Woo-Il;Park, Jong-Kyoo
    • Journal of Adhesion and Interface
    • /
    • v.10 no.2
    • /
    • pp.90-97
    • /
    • 2009
  • Dispersion and self-sensing evaluation for single-carbon fiber reinforced in three different acid-treated CNT-epoxy nanocomposites were investigated by electro-micromechanical techniques and wettability tests. Self-sensing based on contact resistivity exhibited more noise for single carbon fiber/acid-treated CNT-epoxy composites than it did for untreated CNT. However, the apparent modulus was higher the acid treated case than the untreated case which is attributed to better stress transfer. The interfacial shear strength (IFSS) between carbon fibers and the CNT-epoxy was lower than that between carbon fiber and neat epoxy due to the increased viscosity associated with the addition of the CNT. The CNT-epoxy nanocomposite exhibited more hydrophobicity than did neat epoxy. Change in the thermodynamic work of adhesion was consistent with changes in the IFSS but disproportional to that of the apparent modulus. The optimum condition of acid treatment on the need can be obtained instead of the maximum condition.

  • PDF

Experimental Study on Fire-Resistant Characteristics of Bi-Directionally Prestressed Concrete Panel under RABT Fire Scenario (RABT 화재시나리오를 적용한 이방향 프리스트레스트 콘크리트 패널부재의 내화특성에 관한 실험적 연구)

  • Yi, Na-Hyun;Lee, Sang-Won;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.695-703
    • /
    • 2012
  • Recently, major infrastructure such as bridges, tunnels, PCCVs (Prestressed Concrete Containment Vessel), and gas tanks are Prestressed Concrete (PSC) structure types, which improve their safety by using confining effect from prestressing. Generally, concrete is known to be an outstanding fire resistant construction material. Because of this reason, researches related to extreme fire loaded PSC member behaviors are not often conducted even though PSC behavior under extreme fire loading is significantly different than that of ordinary reinforced concrete (RC) behavior. Therefore, in this study, RABT fire loading tests were performed on bi-directionally prestressed concrete panels with $1000{\times}1400{\times}300mm$ dimensions. The prestressed specimens were applied with 430 kN prestressing (PS) force using unbonded PS thread bars. Also, residual strength structural tests of fire tested PSC and ordinary RC structures were performed for comparison. The study results showed that PSC behavior under fire loading is significantly different than that of RC behavior.