• Title/Summary/Keyword: Stress-strength

Search Result 5,812, Processing Time 0.038 seconds

Stress-strain relationship for recycled aggregate concrete after exposure to elevated temperatures

  • Liang, Jiong-Feng;Yang, Ze-Ping;Yi, Ping-Hua;Wang, Jian-Bao
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.609-615
    • /
    • 2017
  • In this paper, the effects of elevated temperatures on the strength and compressive stress-strain curve (SSC) of recycled coarse aggregate concrete with different replacement percentages are presented. 90 recycled coarse aggregate concrete prisms are heated up to 20, 200, 400, 600, $800^{\circ}C$. The results show that the compressive strength, split tensile strength, elastic modulus of recycled aggregate concrete specimens decline significantly as the temperature rise. While the peak strain increase of recycled aggregate concrete specimens as the temperature rise. Compared to the experimental curves, the proposed stress-strain relations for recycled aggregate concrete after exposure elevated temperatures can be used in practical engineering applications.

Finite Element Analysis on the Strength Safety of a Hybrid Alarm Valve (복합알람밸브의 강도안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Kim, Tae-Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.221-224
    • /
    • 2012
  • This paper presents the strength safety of a hybrid alarm valve by a finite element analysis. The stress and strain of a conventional hybrid alarm valve are calculated for the given maximum test pressure of 2MPa. Especially, the FEM computed maximum stress of a conventional hybrid valve is only 18.6% of yield strength, 370MPa. This means that the conventional valve is designed with a thick thickness of a valve structure. But, new hybrid alarm valve model, which is developed by optimized design method in this study, shows more low level of 43% in maximum stress and strain compared with that of a conventional hybrid valve. These results may recommend the reduction of a weight and a dimension for an optimized hybrid alarm valve.

고주파 표면경화에 의한 피로강도 특성과 예측에 관한 연구

  • Song, Sam-Hong;Choi, Byoug-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.122-130
    • /
    • 2001
  • Induction surface hardening is widely used to enhance local strength and hardness. However, most research is only to have a focus on fatigue life and fatigue behavior is not so much studied. So, in this study, Cr-Mo steel alloy(SCM440) was used to show the effect of residual stress and micro hole on the fatigue strength fur base metal and induction surface hardened specimen. In addition, the fatigue characteristic between surface hardened and fully hardened steel is somewhat different. It is caused by hardness distribution, residual stress and inclusions etc.. The modification of prediction equation of fatigue strength is proposed and predicted results show very good accuracy. A $textsc{k}$, which is calculated 1.46, is introduced to consider the effect of stationary crack with defect. A new method of modifying residual stress is proposed to examine the mean stress effect under fatigue loading.

  • PDF

Reference priors for two parameter exponential stress-strength model

  • Kang, Sang-Gil;Kim, Dal-Ho;Le, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.935-944
    • /
    • 2010
  • In this paper, we develop the noninformative priors for the reliability in a stress-strength model where a strength X and a stress Y have independent exponential distributions with different scale parameters and a common location parameter. We derive the reference priors and prove the propriety of joint posterior distribution under the general prior including the reference priors. Through the simulation study, we show that the proposed reference priors match the target coverage probabilities in a frequentist sense.

A Study on the Fatigue Strength of Propellers for High Speed and Large Ships in Sea Water (대형 고속 선박용 프로펠러의 해수 중 피로강도에 관한 연구)

  • Kim, Jong-Ho;An, Jae-Hyeong;Gang, Nak-Hun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.207-212
    • /
    • 2003
  • Recently there has been a remarkable increase in the number of high speed and large ships, and the high power involved for propulsion of above ships have brought high pitch ratio and high skew propeller. The recent tendency toward highly skewed propeller has increased the load on propeller blades and the fatigue strength of propeller blades has become the critical point in design of propellers for above ships. In this paper fatigue tests in sea water were carried out on propeller material of Ni-Al bronze. The stress and environmental conditions of the test were selected to be close to those of full size propellers in use. The effect of stress ratio, stress frequency, revolution number of propeller for above ships numbers and so on were discussed.

  • PDF

A Study on the Strength Analysis of Crankshaft for 4 Stroke Marine Diesel Engine (선박용 4행정 디젤엔진의 크랭크축 강도해석에 관한 연구)

  • Lee, D.C.;Kang, D.S.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.359-368
    • /
    • 2006
  • The trend on marine diesel engine productions and refinements has led to a higher mean effective pressure and thermal efficiency. These resulted in increased maximum combustion pressure within the cylinder and vibratory torque in crankshaft. In view of this. the crankshaft should be able to withstand the dynamic stresses caused by load variations. Different factors including size, material and stress concentration factors should also be considered to ensure the reliability of the shafting system. As such, crankshaft must be designed and compacted within its fatigue strength. In this paper, the strength analysis of crankshaft Is carried out by: simplified method recommended by IACS(International Association Classification Societies) M53 and a detailed method with the crankshaft assumed as a continuous beam and bearing supported in its flexibility. The results of these two methods are then compared.

Case Study on Reliability Prediction of Barrier Type Pulse Separation Device using Stress-Strength Analysis (부하-강도 분석을 이용한 격막형 펄스분리장치의 내열강도에 대한 신뢰성 예측 사례연구)

  • Lee, Dong-Won;Jeong, Se-Yong;Lee, Bang-Eop;Jung, Gyoo-Dong;Park, Boo-Hee;An, Dong-Geun;Jang, Joong-Soon
    • Journal of Applied Reliability
    • /
    • v.15 no.2
    • /
    • pp.124-130
    • /
    • 2015
  • A stress-strength analysis is used to assess the reliability of a multi-pulse rocket motor system. Main stress is found to be thermal during explosion and the distribution is obtained by simulation. The strength distribution is derived from the results of actual specimen tests. The failure rate of barrier type pulse separation device is estimated.

Strength Estimation of Injection Molded Plastic Stepped Spur Gear (사출 성형 플라스틱 단붙이 기어의 강도평가)

  • 정태형;문창기;하영욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.92-97
    • /
    • 2004
  • The aim of this study is to estimate the strength of injection molded plastic stepped gear. We considered stepped gear as plate model which are fixed by two edges. While, on the other sides are free. Normal gear is calculated by Lewis formula which can be derived quite simply from the equation for the stress at the root of a cantilever beam. Stress ratio(step factor) is represented for the ratio of the bending stress of normal and the bending stress of stepped gear, and it is plotted by face width factor. This study is propose the step factor added in Dupont equation which are strength estimation of step gear

  • PDF

Strength Estimation of Injection Molded Plastic Stepped Spur Gear (사출 성형 플라스틱 단붙이 기어의 강도평가)

  • Chong, Tae-Hyong;Moon, Chang-Ki;Ha, Young-Wook
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.17-23
    • /
    • 2006
  • The strength estimation is carried out for injection molded plastic stepped gear. The stepped gear is considered as a plate model which is fixed by two edges and freed on the other sides. The stress of common normal gear is calculated by Lewis formula which can be derived quite simply from the equation fur the stress at the root of a cantilever beam. Stress ratio(step factor) between the common normal gear and stepped gear is proposed for the ratio of the bending stress of normal gear and that of stepped gear. This study proposes the step factor added in Dupont equation which is used for strength estimation of injection molded plastic stepped gear.

Maximum penalized likelihood estimation for a stress-strength reliability model using complete and incomplete data

  • Hassan, Marwa Khalil
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.4
    • /
    • pp.355-371
    • /
    • 2018
  • The two parameter negative exponential distribution has many practical applications in queuing theory such as the service times of agents in system, the time it takes before your next telephone call, the time until a radioactive practical decays, the distance between mutations on a DNA strand, and the extreme values of annual snowfall or rainfall; consequently, has many applications in reliability systems. This paper considers an estimation problem of stress-strength model with two parameter negative parameter exponential distribution. We introduce a maximum penalized likelihood method, Bayes estimator using Lindley approximation to estimate stress-strength model and compare the proposed estimators with regular maximum likelihood estimator for complete data. We also introduce a maximum penalized likelihood method, Bayes estimator using a Markov chain Mote Carlo technique for incomplete data. A Monte Carlo simulation study is performed to compare stress-strength model estimates. Real data is used as a practical application of the proposed model.