• Title/Summary/Keyword: Stress-life curve

Search Result 207, Processing Time 0.03 seconds

Mechanical Behavior of Steel Fiber Reinforced Lightweight Polymer Concretese (강섬유보강 경량 폴리머 콘크리트의 역학적 거동)

  • Youn, Joon-No;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.2
    • /
    • pp.63-72
    • /
    • 2005
  • In this study, the physical and mechanical properties of steel fiber reinforced lightweight polymer concrete were investigated experimentally with various steel fiber contents. All tests were performed at room temperature, and stress-strain curve and load-deflection curve were plotted up to failure. The unit weight of steel fiber reinforced lightweight polymer concrete was in the range of $1,020{\sim}1,160\;kg/m^3$, which was approximately $50\%$ of that of the ordinary polymer concrete, The compressive strength, splitting tensile strength, flexural toughness and flexural load-deflection curves after maximum load were shown with increase of steel fiber content. The stress-strain curves of steel fiber reinforced lightweight polymer concrete were bilinear in nature with a small transition zone, Based on these results, steel fiber reinforced lightweight polymer concrete can be widely applied to the polymer composite products.

FATIGUE DESIGN OF BUTT-WELDED TUBULAR JOINTS

  • Kim, D. S.;S. Nho;F. Kopp
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.127-132
    • /
    • 2002
  • Recent deepwater offshore structures in Gulf of Mexico utilize butt welded tubular joints. Application of welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical because the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimating the fatigue behavior of these tubular members in the design stage is generally conducted by using S-N curves specified in the codes and standards. Applying the stress concentration factor of the welded structure to S-N approach often results in very conservative assessment because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fracture mechanics and fitness for service (FFS) technology have been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves to be used and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. An attempt was made to develop set of S-N curves based on fracture mechanics approach by considering non-uniform stress distribution and a threshold stress intensity factor. Series of S-N curves generated from this approach were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02"). Similar comparison with API X′ was made for tubular joint.. These initial crack depths are larger than the limits of inspection by current Non-destructive examination (NDE) means, such as Automatic Ultrasonic Inspection (AUT). Thus a safe approach can be taken by specifying acceptance criteria that are close to limits of sizing capability of the selected NDE method. The comparison illustrates conservatism built into the S-N design curve.

  • PDF

Fatigue Life Prediction of Crank-type Rotavator

  • Kim, Dae-Chun;Park, Young-Jun;Lee, Geun-Ho
    • Journal of Biosystems Engineering
    • /
    • v.40 no.4
    • /
    • pp.305-313
    • /
    • 2015
  • Purpose: This study was performed to predict the fatigue life of a crank-type rotavator operated in domestic soil conditions using Recurdyn$^{(R)}$, a dynamic analysis program. Methods: Torque on the PTO shaft was measured using experiments conducted on the uplands and paddy fields in Korea. On the basis of the experimental and analytical results, the fatigue life of the crank-type rotavator was predicted by constructing an S-N curve according to the GL (Germanischer Lloyd Wind Energie GmbH) guideline. Results: The torques experienced by the PTO shaft in the paddy soil and the uplands were in the range of 472~797 N m and 313~430 N m, respectively, for every condition. In case of load condition, the peak torques (846 N m, 770 N m) were applied for severe conditions, resulting in a maximum (von Mises) stress of 75 MPa at the crank arm. The fatigue life of the crank-type rotavator was predicted to be 1,167 h that satisfies the target value of 1,110 h, by substituting the analysis results into an S-N curve of crank arm. Conclusions: The fatigue life of the crank-type rotavator was within the target life for the studied soil conditions; however, further field experiments for various soil conditions would be required to verify the prediction results.

A STUDY ON THE FATIGUE LIFE PREDICTION OF GUIDEWAY VEHICLE COMPONENTS (안내궤도 차량 부품의 피로 수명 예측에 관한 연구)

  • Lee, Soo-Ho;Park, Tae-Won;Yoon, Ji-Won;Jeon, Yong-Ho;Jung, Sung-Pil;Park, Joong-kyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.997-1002
    • /
    • 2007
  • A guideway vehicle is used in automobile, semiconductor and LCD manufacturing industries to transport products efficiently. Since the operating speed of the guideway vehicle should be increased for maximum productivity, the weight of the vehicle has to be reduced. This may cause parts in the system to fail before the life of the system. Therefore estimation of the fatigue life of the parts becomes an important problem. In this study, the fatigue life of the driving wheel in the guideway vehicle is estimated using a S-N curve. To obtain the fatigue life of a part, the S-N curve, load time history applied on a driving wheel and material property are required. The S-N curve of the driving wheel is obtained using the fatigue experiment on wheels. Load time history of the wheel is obtained from multibody dynamics analysis. To obtain the material properties of the driving wheel, which is composed of aluminum with urethane coating, a compression hardware testing has been done with the static analysis of the FE model. The fatigue life prediction using computational analysis model guarantees the safety of the vehicle at the design stage of the product.

  • PDF

Fatigue Life Evaluation of Notched Shaft Using Local Strain Approach (국부변형률방법을 이용한 노치를 지닌 축의 피로수명평가)

  • 고승기;김영일;이학주;김완두;이상록
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.80-89
    • /
    • 1996
  • Fatigue life of a notched shaft was evaluated in order to estimate the durability and integrity of the notched shaft in design stage. Cumulative fatigue dama- ge analysis was performed using local strain approach based on the assumption that the fatigue life of a notched component is approximately same as that of a smooth specimen is subjected to the same strain at the notched component. In this paper, shafts with different notch root radius of 1, 2㎜ resulting in different values of stress concentration factors were tested under||rotating bending fatigue loading condition. Theoretical stress concentration factor for each notch type was calculated using finite element method. Fatigue life prediction program, FALIPS, written in C language was developed using the strain-life curve, and the local strain approach integrating Neuber's rule, cyclic stress-strain, and hysteresis loop equations. The fatigue life evaluated using the fatigue notch factor obtained from the experimentally determined fatigue strength showed very large scattering with nonconservatism, but the fatigue notch factors derived from the stress concentration factors and Peterson's equation reduced the considerablely accurate fatigue life evaluation within a factor of three.

  • PDF

Fatigue Characterization of NiTiCu Shape Memory Alloys (NiTiCu 형상기억합금의 피로특성)

  • Han, Ji-Won;Park, Sung Bum
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.28-33
    • /
    • 2014
  • Recently, the actuator worked by the driving recovery-force of the thermo elastic martensitic transformation of shape memory alloys(SMA) has been studied. This paper presents a study on the fatigue life of shape memory alloy (SMA) actuators undergoing thermally induced martensitic phase transformation under various stress levels. shape memory recoverable stress and strain of Ti-44.5at.%Ni-8at.%Cu alloys were by means of constant temperature tensile tests. Differential scanning calorimetry (DSC) was employed in order to investigate the transformation characteristics of the alloy before the tests. the results were summarized as follows. The martensite inducing stress incerased with the increasing of the Cu-contents. The fatigue life decreased with the increasing of the test load and the Cu-content. The data acquired will be very useful during the design process of an SMA NiTiCu element as a functional part of an actuator.

A Study on the High Temperature Fatigue Behavior of Hot Forging Die STD61 Steel (STD61 열간 금형강의 고온피로거동에 관한 연구)

  • 여은구;이태문;이용신
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.711-714
    • /
    • 2002
  • Although recent research of metallic materials in high temperature fatigue have been much accomplished, many studies about brittle material as a die steel in high temperature fatigue does not have been reported. Especially, the study on the fatigue behavior over the transformation temperature is not studied sufficiently because of its difficult analysis and experiment. Therefore, reliable results of brittle material in high temperature fatigue behavior are needed. In this paper, stress-strain curves and stress-life curves in die STD61 steel at 700 and 900 are carefully examined, as the basic experimental data are used to predict from fatigue life over 700.

  • PDF

Microstructure, Tensile Strength and Probabilistic Fatigue Life Evaluation of Gray Cast Iron (회주철의 미세구조와 인장거동 분석 및 확률론적 피로수명평가)

  • Sung, Yong Hyeon;Han, Seung-Wook;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.721-728
    • /
    • 2017
  • High-grade gray cast iron (HCI350) was prepared by adding Cr, Mo and Cu to the gray cast iron (GC300). Their microstructure, mechanical properties and fatigue strength were studied. Cast iron was made from round bar and plate-type castings, and was cut and polished to measure the percentage of each microstructure. The size of flake graphite decreased due to additives, while the structure of high density pearlite increased in volume percentage improving the tensile strength and fatigue strength. Based on the fatigue life data obtained from the fatigue test results, the probability - stress - life (P-S-N) curve was calculated using the 2-parameter Weibull distribution to which the maximum likelihood method was applied. The P-S-N curve showed that the fatigue strength of HCI350 was significantly improved and the dispersion of life data was lower than that of GC300. However, the fatigue life according to fatigue stress alleviation increased further. Data for reliability life design was presented by quantitatively showing the allowable stress value for the required life cycle number using the calculated P-S-N curve.

Fatigue Life Prediction of the Carrier of Slewing Reducer for Tower Crane (타워크레인용 선회감속기의 캐리어 피로 수명 예측)

  • Cho, Seung-Je;Park, Young-Jun;Han, Jeong-Woo;Lee, Geun-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.131-140
    • /
    • 2015
  • The purpose of this study is to predict the fatigue life of a planet carrier of a slewing reducer for a tower crane. To predict the fatigue life of the carrier, the inertia endurance test was carried out, and then the input torque profile for the reducer was obtained. The load profile acting on the planet pins that assembled the carrier was calculated from the measured input torque profile using commercial gearbox analysis software. The stress profiles of the carrier weak points were analyzed from the calculated load profile and boundary conditions using commercial FE software, and the stress cycles were determined using the rainflow counting method. Finally, the fatigue life of the carrier was predicted using the equivalent stress range by considering the effect of mean stress, and an S-N curve was drawn up using the GL guideline and the cumulative damage law.