• Title/Summary/Keyword: Stress-laminated timber

Search Result 16, Processing Time 0.039 seconds

Aging Characteristics of Bolt Pretension of Stress-laminated Timber (응력적층재의 볼트 압체력 경시변화)

  • Eom, Chang-Deuk;Lee, Sang-Joon;Kim, Kwang-Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.505-511
    • /
    • 2011
  • In this study, it is carried out to analysis of the bolt pretension of the stress-laminated timber. Bolt pretension of stress-laminated timber was decreased by time. The loss of force is caused by moisture content, shrinkage of wood. After re-stressing the stress-laminated timber, the rate of force decrement was slowed significantly. To use of stress-laminated timber for the service, it is necessary to make an accurate estimate of force. It is clear that is different between actual value and predicted value changes by existing model for bolt pretension of stress-laminated timber. Accordingly, considering the time and the external environment, the development of prediction model is needed.

Fracture Toughness of Glass Fiber Reinforced Laminated Timbers (유리섬유 보강적층재의 파괴인성 특성)

  • Kim, Keon-ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.861-867
    • /
    • 2015
  • The Compact Tension (CT) type test was performed in order to evaluate the fracture toughness performance of glass fiber-reinforced laminated timber. Glass fiber textile and sheet Glass fiber reinforced plastic were used as reinforcement. The reinforced laminated timber was formed by inserting and laminating the reinforcement between laminated woods. Compact tension samples are produced under ASTM D5045. The sample length was determined by taking account of the end distance of 7D, and bolt holes (12 mm, 16 mm, 20 mm) had been made at the end of artificial notches in advance. The fracture toughness load of sheet fiberglass reinforced plastic reinforced laminated timber was increased 33 % in comparison to unreinforced laminated timber while the glass fiber textile reinforced laminated timber was increased 152 %. According to Double Cantilever Beam theory, the stress intensity factor was 1.08~1.38 for sheet glass fiber reinforced plastic reinforced laminated timber and 1.38~1.86 for glass fiber textile reinforced laminated timber, respectively. That was because, for the glass fiber textile reinforced laminated timber, the fiber array direction of glass fiber and laminated wood orthogonal to each other suppressed the split propagation in the wood.

Bending Behavior of Preservative Treated Pitch Pine Stress-Laminated Timber (방부처리 리기다소나무 응력적층재의 휨거동 특성)

  • Kim, Kwang-Mo;Shim, Kug-Bo;Kim, Byoung-Nam
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.306-315
    • /
    • 2010
  • The stress laminated timber, which could be manufactured by small dimension lumber on construction site, has high possibilities for bridges in remote area, such as recreation forest or forest road, because those bridges may be short span and low frequency in use. The stress laminated timber has merits of easiness for preservative treatment and transportation because it is manufactured with small dimension lumber. This study was carried out to analyze performances of stress laminated timber manufactured with preservative treated domestic pitch pine for developing structural design data for stress laminated timber bridges for vehicular traffic. Perpendicular to grain compressive performance by preservative treatment and bending performance by bored holes of pitch pine lumber was analyzed. Then, the effects of bending performance by pre-stress pressure, distance of bolts, number of laminations and planning were analyzed. Conclusively, planning of lumber was not necessary for manufacturing stress laminated timber, and 80% of bending stiffness criteria was maintained as pre-stress pressure was higher than 3.0 kg/$cm^2$. However, further researches are needed to define the effects of bolt distances and number of laminations. The results of this research would be basic data for design stress laminated timber bridges for vehicular traffic in Korea.

Characterization of Radial Stress in Curved Beams

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.128-136
    • /
    • 2009
  • Curved glued laminated timber (glulam) is rapidly coming into the domestic modern timber frame buildings and predominant in building construction. The radial stress is frequently occurred in curved beams and is a critical design parameter in curved glulam. Three models, Wilson equation, Exact solution and Approximation equation were introduced to determine the radial stress of curved glulam under pure bending condition. It is obvious that radial stress distribution between small radius and large radius was different due to slight change of neutral plane location to center line. If the beam design with extremely small radius, it should be considered to determine the exact location of maximum radial stress. The current standard KSF 3021 was reviewed and would be considered some adjustment determining the optimum radius in curved glulam. Current design principle is that the stress factor is given by the curvature term only in constant depth of the beam, but like tapered or small radius of beams, the stress factor by Wilson equation was underestimated. So current design formula should be considered to improvement for characterizing the radial stress factor under pure bending condition.

Elasto-plastic behaviour of joint by inserting length of H-beam and structural laminated timber (H형강과 구조용집성재의 삽입길이에 따른 접합부의 탄소성 거동)

  • Kim, Soon Chul;Yang, Il Seung;Moon, Youn Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.251-259
    • /
    • 2006
  • In some cases, wooden structures are used for medium-rise buildings. It is therefore necessary to develop and test a new structural system for medium-rise buildings using wooden structures. This study deals with high-performance, laminated, timber-based composite members, which consist of structural laminated timber and H-beam. Simple beam tests were performed to determine the strength, stress distributions, and failure patterns of laminated timber. The main parameters are the insertinglength (1, 1.5, and 2 times the H-beam height) and the epoxy between the top/bottom flange of the H-beam and the top/bottom flange of the laminated timber. The results of the test show that the specimen with an inserting length that is 2 times the H-beam height was characterized by fairly god strength and stiffness.

Physical Properties of Fabric E-glass Fiber Reinforced Laminated Timber (I) - Mechanical Properties - (직물유리섬유 강화집성재의 물리적 특성(제1보) - 기계적 특성 -)

  • Jung, In-Suk;Lee, Weon-Hee;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.23-34
    • /
    • 2003
  • This study was carried out to investigate the mechanical properties of fabric E-glass fiber reinforced laminated timber. Specimens used to Korean red pine(Pinus densiflora) and Japanese larch(Larix kaemferi). Fabric E-glass fiber was inserted in the solid wood with aqueous polymer-isocyanate resin(MPU-500). The results were as follows: 1. Aqueous polymer-isocyanate resin(MPU-500) was good resin to manufacture laminated timber. specially, it was satisfied to property standard of construction laminated timber(KS F 3021) except for two ply glass fiber. 2. Bending and shear strengths of solid wood inserted with fabric glass fibers were not different from control solid wood. But, proportional limit bending stress was increased following the number of fabric glass fibers. Therefore, it was considered that to improve the bending and shear strength of fabric glass fiber reinforced laminated timber, the glass fiber thickness and its mesh should be modified to fitness following working conditions.

Feasibility of Non-Korean Standard Glulam Using a Lower Grade Lamina of Japanese cedar for Structural Use

  • Oh, Jung-Kwon;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.85-93
    • /
    • 2010
  • Japanese cedar has low density and poor mechanical performance. Manufacturing glue-laminated timber (glulam) is the best way to compensate for its poor mechanical performance. The Korean Standard (KS) confines outermost lamina of glulam to higher grade than E8, but the yield of higher than grade E8 from logs is only 6.5%. Therefore, the aim of this study is to investigate the possibility of non-Korean-Standard glulam in structural applications. Allowable stresses determined by both hand-calculation and Monte-Carlo simulation show a higher allowable stress than that of the KS-standard glulam of 6S-22B. In the Korean Standard (KS), knot characteristics are not taken into account. Japanese cedar has relatively small knots. We believe that the small knots in Japanese cedar contribute to a higher allowable stress than the KS-standard glulam would predict. The species classification of KS is required to be further subdivided into sub-species groups based on knot characteristics.

Structural Performance Evaluation on Stress-Laminated Timber Bridge Deck Using Finite Element Analysis (유한요소해석을 이용한 응력적층 바닥판의 구조성능평가)

  • Shin, Yukyung;Eom, Chang-Deuk;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.20-26
    • /
    • 2014
  • This paper represented the finite element analysis to estimate structural performance of stress-laminated deck, which is determined by deflection, stress, and aging characteristics of tensioning. After loading, the deflected shape showed plate behavior because pre-stressing make frictional force between each member. Compared between initial post-tension and the results, pre-stressing forces were decreased with deck deflection. This is because deflection occurred in the deck so that pre-stressing decreased due to load reduction. However, material plasticity was not considered so that advanced researches should be performed.

Lateral Load Performance Evaluation of Larch Glulam Portal Frames Using GFRP-Reinforced Laminated Plate and GFRP Rod (GFRP 보강적층판 및 GFRP rod를 이용한 낙엽송 집성재 문형라멘 구조의 수평가력 성능평가)

  • Jung, Hong-Ju;Song, Yo-Jin;Lee, In-Hwan;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.30-39
    • /
    • 2016
  • The evaluation of the lateral load performance for larch glulam portal frames was carried out using glass fiber reinforced plastic (GFRP) as connector in two different systems: the GFRP-reinforced laminated plates combined with veneer, and GFRP rod joints glued with epoxy resins to replace usual metal connectors for the structural glulam rahmen joints. As a result the yield strength, ultimate strength, initial stiffness of glulams of GFRP rod joints glued with epoxy resin decreased to 49%, 52% and 61% compared to those of the conventional metal connector. This connector will be a stress device where the bonding strength between the GFRP rod and glued laminated timber is important. Thus, there will be a high possibility that a problem may occur when it is applied to the field. On the other hand, the GFRP-reinforced laminated plates and wood (Eucalyptus marginata) pin were measured all within 3% for all measurements of the yield strength, ultimate strength, initial strength and ductility factor, regardless of high cross sectional loss on the glued laminated timber slit joint. In addition, the variation of stiffness on the cycle was 35%, which was the lowest, confirming that it was almost the same performance as the specimen prepared with the metal connector.

High Temperature Drying of Pitch Pine Lumber (리기다소나무 고온건조)

  • Yeo, Hwan-Myeong;Shim, Sang-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.46-51
    • /
    • 2004
  • The objective of this study was to evaluate the applicability of high temperature drying to pitch pine (Pinus rigida) lumber, especially intended for use as lamina of structural glued laminated timber (glulam), to enhance the efficient utilization and provide added-value to that species. The high temperature schedule and drying procedures utilized were shown to be reasonable for drying glulam lamina due to the occurrence of small moisture gradients, minimal residual drying stress, and low warpage. Through preliminary tests, it was confirmed that residual resin at lamina surfaces did not adversely affect the gluing process. However, quantitative analysis of resin is required for developing a method to constrain the occurrence of pitch trouble with respect to decreasing long-term adhesive and finish durability of glulam in use after manufacturing. The final moisture content of high temperature dried lamina was much lower than target moisture content and discoloration was more severe than anticipated. In a further study, it will be necessary to determine the optimal drying conditions, such as temperature, humidity, drying time, and top load restraint level, which could best control discoloration, warpage, and moisture content of the lamina, while minimizing fuel expense.