• Title/Summary/Keyword: Stress-activated protein kinase

Search Result 169, Processing Time 0.024 seconds

The Involvement of p38 MAPK and JNK Activation in Palmitic Acid-Induced Apoptosis in Rat Hepatocytes (Palmitic acid에 의한 간세포 사멸효과에 대한 p38 MAPK 및 JNK 관련성)

  • Bae, Chun-Sik;Park, Soo-Hyun
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1119-1124
    • /
    • 2009
  • Hyperlipidemia has been reported to be associated with the development of fatty liver. Palmitic acid, a major saturated fatty acid, is involved in the development of diverse diseases. The activation of mitogen activated protein kinases (MAPKs), such as Jun N-terminal kinase (INKs) and p38 MAPK is implicated in the apoptosis in diverse cells. Thus, this study was conducted to investigate the effects of palmitic acid on apoptosis and its relationship between JNK and p38 MAPK in cultured rat hepatocytes. In the present study, palmitic acid (>50 uM) decreased cell proliferation and increased lactate dehydrogenase activity in hepatocytes, which was blocked by the treatment of SP600125 (a JNK inhibitor) and SB203580 (a p38 MAPK inhibitor). Indeed, palmitic acid decreased Bcl-2 expression but increased Bax expression in rat hepatocytes, which was blocked by the treatment of SP600125 and SB203580. In addition, palmitic acid decreased glutathione (GSH) content and increased lipid peroxide formation, which was blocked by the treatment of SP600125 and SB203580. Western immunoblotting analysis also revealed that palmitic acid increased JNK and p38 MAPK. In conclusion, palmitic acid induced apoptosis through oxidative stress via JNK and p38 MAPK activation in rat hepatocytes.

Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells

  • Kim, Dong Hoi;Kim, Dae Won;Jung, Bo Hyun;Lee, Jong Hun;Lee, Heesu;Hwang, Gwi Seo;Kang, Ki Sung;Lee, Jae Wook
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.326-334
    • /
    • 2019
  • Background: The objective of our study was to analyze the neuroprotective effects of ginsenoside derivatives Rb1, Rb2, Rc, Rd, Rg1, and Rg3 against glutamate-mediated neurotoxicity in HT22 hippocampal mouse neuron cells. Methods: The neuroprotective effect of ginsenosides were evaluated by measuring cell viability. Protein expressions of mitogen-activated protein kinase (MAPK), Bcl2, Bax, and apoptosis-inducing factor (AIF) were determined by Western blot analysis. The occurrence of apoptotic and death cells was determined by flow cytometry. Cellular level of $Ca^{2+}$ and reactive oxygen species (ROS) levels were evaluated by image analysis using the fluorescent probes Fluor-3 and 2',7'-dichlorodihydrofluorescein diacetate, respectively. In vivo efficacy of neuroprotection was evaluated using the Mongolian gerbil of ischemic brain injury model. Result: Reduction of cell viability by glutamate (5 mM) was significantly suppressed by treatment with ginsenoside Rb2. Phosphorylation of MAPKs, Bax, and nuclear AIF was gradually increased by treatment with 5 mM of glutamate and decreased by co-treatment with Rb2. The occurrence of apoptotic cells was decreased by treatment with Rb2 ($25.7{\mu}M$). Cellular $Ca^{2+}$ and ROS levels were decreased in the presence of Rb2, and in vivo data indicated that Rb2 treatment (10 mg/kg) significantly diminished the number of degenerated neurons. Conclusion: Our results suggest that Rb2 possesses neuroprotective properties that suppress glutamate-induced neurotoxicity. The molecular mechanism of Rb2 is by suppressing the MAPKs activity and AIF translocation.

Screening for Mucosal Protective Effects of Various Korean Herbal Medicine Extracts in Gastroesophageal Reflux Disease (한방 추출물의 역류성 식도염 점막보호 효과에 대한 스크리닝)

  • Il-ha Jeong;Min Ju Kim;Mi-Rae Shin;Seong-Soo Roh
    • The Korea Journal of Herbology
    • /
    • v.39 no.1
    • /
    • pp.39-47
    • /
    • 2024
  • Objectives : This study evaluates how various traditional Korean herbal medicines assess MUC5AC expression for esophageal mucosal defense and analyzes the associated mechanisms involved in inflammation. Methods : Forty types of traditional Korean herbal medicines were assessed for in vitro antioxidant activities, and the real-time PCR method was employed to analyze MUC5AC expression under pH 4.5 conditions in human esophageal epithelial cells (HET-1A). Eight types of Korean herbal medicines were evaluated for in vitro antioxidant activities, and Reactive oxygen specise (ROS) expression was analyzed under bile salt (480 𝜇M) and pH 5.5 conditions in human esophageal epithelial cells (HET-1A). Simulation experiments involving bile salts and acidity were conducted for one hour to assess the efficacy of four drugs, and the activities of Mitogen-activated Protein Kinase (MEK), Nuclear Factor Kappa B (NF-𝜅B), and Cyclooxygenase-2 (COX-2) were detected through Western blot analysis. Results : Compared to the Normal group, the Control group exhibited higher ROS generation. Such increased ROS levels were significantly reduced by four extracts: Citrus Unshius Pericarpium (CUP), Cnidium officinale Rhizoma (CR), Ginseng Radix (GR), and Linderae Radix (LR). The protein expression of COX-2 decreased with the treatment of LR, CUP, and CR. Particularly, CUP and CR exhibited superior effects compared to other groups in inhibiting the phosphorylation of NF-𝜅B. Conclusion : Based on the results obtained, we have identified drugs that inhibit oxidative stress and inflammation caused by bile acid in esophageal epithelial cells. Our future plans involve comparing and analyzing the efficacy of these herbal medicines through animal experiments.

Construction of an Efficient Mutant Strain of Trichosporonoides oedocephalis with HOG1 Gene Deletion for Production of Erythritol

  • Li, Liangzhi;Yang, Tianyi;Guo, Weiqiang;Ju, Xin;Hu, Cuiying;Tang, Bingyu;Fu, Jiaolong;Gu, Jingsheng;Zhang, Haiyang
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.700-709
    • /
    • 2016
  • The mitogen-activated protein kinase HOG1 (high-osmolarity glycerol response pathway) plays a crucial role in the response of yeast to hyperosmotic shock. Trichosporonoides oedocephalis produces large amounts of polyols (e.g., erythritol and glycerol) in a culture medium. However, the effects of HOG1 gene knockout and environmental stress on the production of these polyols have not yet been studied. In this study, a To-HOG1 null mutation was constructed in T. oedocephalis using the loxP-Kan-loxP/Cre system as replacement of the targeted genes, and the resultant mutants showed much smaller colonies than the wild-type controls. Interestingly, compared with the wild-type strains, the results of shake-flask culture showed that To-HOG1 null mutation increased erythritol production by 1.44-fold while decreasing glycerol production by 71.23%. In addition, this study investigated the effects of citric acid stress on the T. oedocephalis HOG1 null mutants and the wild-type strain. When the supplementation of citric acid in the fermentation medium was controlled at 0.3% (w/v), the concentration of erythritol produced from the wild-type and To-HOG1 knockout mutant strains improved by 18.21% and 21.65%, respectively.

Effect of Nardotidis seu Sulculii Concha water extract (NSCE) on liver damage and depression in restraint-induced stress model (구속 스트레스 모델에서 석결명의 간손상 및 우울증 관련 인자에 미치는 영향)

  • Kim, Min-Jung;Oh, Tae-woo;Do, Hyun-joo;Kim, Kwang-yeon;Yang, Joo-hye;Son, Jae-Dong;Yang, Ye-jin;You, Young-Zoo;Kim, Woo-Hyun;Kang, Seung-Ho;Lee, Dong-ho;Ki, Seung-hee;Kim, Young-Woo;Park, Kwang-Il
    • Herbal Formula Science
    • /
    • v.30 no.2
    • /
    • pp.85-93
    • /
    • 2022
  • Objectives : This study investigated anti-inflammatory effects of Nardotidis seu Sulculii Concha water extract (NSCE) against restraint-induced stress. Methods : In vivo, NSCE was orally administered to male white mice at concentrations of 250 mg/kg and 500 mg/kg for 3 days, and then restraint-induced stress was induced for 6 hours. The level of liver damage was measured by serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH). The stress-related hormones such as cortisol and corticosterone were measured by ELISA assay. Also, western blot analysis was performed to detect expression of mitogen-activated protein kinase (MAPK) and cyclooxygenase-2 (COX-2) proteins. Pathological changes were observed by hematoxylin and eosin (H&E) staining of the liver tissue, and Immunohistochemical (IHC) staining was performed to examine liver inflammation through macrophage infiltration. Results : The AST, ALT, LDH and the stress related hormones such as cortisol and corticosterone were significantly decreased in the NSCE treated group compared with stress group. In histological analysis, H&E staining of liver tissues did not detect the hepatic injury or damage in all groups. As a result of IHC staining, it was confirmed that infiltration of macrophages was increased in the stress-induced group, but decreased in the group treated with NSCE. The COX-2 and MAPK proteins expression was significantly increased by restraint-induced stress, but these proteins were decreased in the NSCE treated group. Conclusions : These results suggest that NSCE has the anti-inflammatory activity in restraint-induced stress model, and it is believed that NSCE can be used for the prevention of liver inflammation.

Effects of N-acetylcysteine on the energy status and antioxidant capacity in heart and liver of cold-stressed broilers

  • Li, Chengcheng;Peng, Meng;Liao, Man;Guo, Shuangshuang;Hou, Yongqing;Ding, Binying;Wu, Tao;Yi, Dan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1444-1454
    • /
    • 2020
  • Objective: Cold stress induces oxidative damage and impairs energy status of broilers. N-acetylcysteine (NAC) exhibits antioxidant properties and modulates energy metabolism of animals. This study was conducted to investigate the effects of NAC on energy status and antioxidant capacity of heart and liver in the cold-stressed broilers. Methods: The experiment consisted of 4 treatments in a 2×2 factorial arrangement with two diets (basal diet or plus 0.1% NAC) and two ambient temperatures (thermoneutral [conventional ambient temperature] or cold stress [10℃±1℃ during days 15 to 42]). Results: No ascites were seen in cold-stressed broilers. NAC did not attenuate the impaired growth performance of stressed birds. However, NAC decreased plasma asparagine but increased aspartate levels in cold-stressed birds (p<0.05). NAC reduced hepatic adenosine triphosphate (ATP) but elevated adenosine diphosphate contents in unstressed birds (p<0.05). The hepatic ratio of adenosine monophosphate (AMP) to ATP was increased in birds fed NAC (p<0.05). NAC decreased plasma malondialdehyde (MDA) level and cardiac total superoxide dismutase (T-SOD) activity in unstressed birds, but increased hepatic activities of T-SOD, catalase and glutathione peroxidase in stressed birds (p<0.05). NAC down-regulated hepatic AMP-activated protein kinase but up-regulated cardiac heme-oxigenase mRNA expression in stressed birds, and decreased expression of hepatic peroxisome proliferator-activated receptor coactivator-1α as well as hypoxia-inducible factor-1α in liver and heart of birds. Conclusion: Dietary NAC did not affect energy status but enhanced the hepatic antioxidant capacity by increasing the activities of antioxidant enzymes in cold-stressed broilers.

Transduced PEP-1-AMPK inhibits the LPS-induced expression of COX-2 and iNOS in Raw264.7 cells

  • Shin, Min-Jea;Lee, Yeom-Pyo;Kim, Dae-Won;An, Jae-Jin;Jang, Sang-Ho;Cho, Sung-Min;Sheen, Seung-Hoon;Lee, Hae-Ran;Kweon, Hae-Yong;Kang, Seok-Woo;Lee, Kwang-Gill;Park, Jin-Seu;Eum, Won-Sik;Cho, Yong-Jun;Choi, Soo-Young
    • BMB Reports
    • /
    • v.43 no.1
    • /
    • pp.40-45
    • /
    • 2010
  • AMP-activated protein kinase (AMPK) is a heterotrimeric enzyme that plays a central role in cellular metabolic stress. Modulation of nitric oxide (NO) and cyclooxygenase-2 (COX-2) is considered a promising approach for the treatment of inflammation and neuronal diseases. In this study, the AMPK gene was fused in-frame with PEP-1 peptide in a bacterial expression vector to produce a PEP-1-AMPK fusion protein. Expressed and purified PEP-1-AMPK fusion proteins were transduced efficiently into macrophage Raw 264.7 cells in a time- and dose-dependent manner. Furthermore, transduced PEP-1-AMPK fusion protein markedly inhibited LPS-induced iNOS and COX-2 expression. These results suggest that the PEP-1-AMPK fusion protein can be used for the protein therapy of COX-2 and NO-related disorders such as inflammation and neuronal diseases.

Ginsenoside Rb1 and Rb2 upregulate Akt/mTOR signaling-mediated muscular hypertrophy and myoblast differentiation

  • Go, Ga-Yeon;Jo, Ayoung;Seo, Dong-Wan;Kim, Woo-Young;Kim, Yong Kee;So, Eui-Young;Chen, Qian;Kang, Jong-Sun;Bae, Gyu-Un;Lee, Sang-Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.435-441
    • /
    • 2020
  • Background: As a process of aging, skeletal muscle mass and function gradually decrease. It is reported that ginsenoside Rb1 and Rb2 play a role as AMP-activated protein kinase activator, resulting in regulating glucose homeostasis, and Rb1 reduces oxidative stress in aged skeletal muscles through activating the phosphatidylinositol 3-kinase/Akt/Nrf2 pathway. We examined the effects of Rb1 and Rb2 on differentiation of the muscle stem cells and myotube formation. Methods: C2C12 myoblasts treated with Rb1 and/or Rb2 were differentiated and induced to myotube formation, followed by immunoblotting for myogenic marker proteins, such as myosin heavy chain, MyoD, and myogenin, or immunostaining for myosin heavy chain or immunoprecipitation analysis for heterodimerization of MyoD/E-proteins. Results: Rb1 and Rb2 enhanced myoblast differentiation through accelerating MyoD/E-protein heterodimerization and increased myotube hypertrophy, accompanied by activation of Akt/mammalian target of rapamycin signaling. In addition, Rb1 and Rb2 induced the MyoD-mediated transdifferentiation of the rhabdomyosarcoma cells into myoblasts. Furthermore, co-treatment with Rb1 and Rb2 had synergistically enhanced myoblast differentiation through Akt activation. Conclusion: Rb1 and Rb2 upregulate myotube growth and myogenic differentiation through activating Akt/mammalian target of rapamycin signaling and inducing myogenic conversion of fibroblasts. Thus, our first finding indicates that Rb1 and Rb2 have strong potential as a helpful remedy to prevent and treat muscle atrophy, such as age-related muscular dystrophy.

Effects of taurine and ginseng extracts on energy metabolism during exercise and their anti-fatigue properties in mice

  • Kim, Jisu;Beak, Suji;Ahn, Sanghyun;Moon, Byung Seok;Kim, Bom Sahn;Lee, Sang Ju;Oh, Seung Jun;Park, Hun-Young;Kwon, Seung Hae;Shin, Chul Ho;Lim, Kiwon;Lee, Kang Pa
    • Nutrition Research and Practice
    • /
    • v.16 no.1
    • /
    • pp.33-45
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Ginseng extract (GSE) and taurine (TR) are widely used antifatigue resources in functional foods. However, the mechanism underlying the antifatigue effects of GSE and TR are still unclear. Hence, we investigated whether GSE and TR have synergistic effects against fatigue in mice. MATERIALS/METHODS: L6 cells were treated with different concentrations of TR and GSE, and cell viability was determined using 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium. Oxidative stress was analyzed by immunocytochemistry using MitoTrackerTM Red FM and an anti-8-oxoguanine antibody. Respiratory gas analysis was performed to investigate metabolism. Expression of an activated protein kinase was analyzed using immunohistochemistry. Gene expression of cluster of differentiation 36 and pyruvate dehydrogenase lipoamide kinase isozyme 4 was measured using reverse transcription-polymerase chain reaction. Mice were orally administered TR, GSE, or their combination for 30 days, and then fatigue-related parameters, including lactate, blood urea nitrogen, and glycogen, were measured after forced swimming. RESULTS: TR and GSE reduced oxidative stress levels in hydrogen peroxide-stimulated L6 cells and enhanced the oxygen uptake and lipid metabolism in mice after acute exercise. After oral administration of TR or GSE for 30 days, the fatigue-related parameters did not change in mice. However, the mice administered GSE (400 mg/kg/day) alone for 30 days could swim longer than those from the other groups. Further, no synergistic effect was observed after the swimming exercise in mice treated with the TR and GSE combination for 30 days. CONCLUSIONS: Taken together, our data suggest that TR and GSE may exert antifatigue effects in mice after acute exercise by enhancing oxygen uptake and lipid oxidation.

Protodioscin protects porcine oocytes against H2O2-induced oxidative stress during in vitro maturation

  • So-Hee Kim;Seung-Eun Lee;Jae-Wook Yoon;Hyo-Jin Park;Seung-Hwan Oh;Do-Geon Lee;Da-Bin Pyeon;Eun-Young Kim;Se-Pill Park
    • Animal Bioscience
    • /
    • v.36 no.5
    • /
    • pp.710-719
    • /
    • 2023
  • Objective: The present study investigated whether protodioscin (PD), a steroidal saponin mainly found in rhizome of Dioscorea species, alleviates oxidative stress-induced damage of porcine oocytes during in vitro maturation. Methods: Oocytes were treated with different concentrations of PD (0, 1, 10, 100, and 200 µM) in the presence of 200 µM H2O2 during in vitro maturation. Following maturation, spindle morphology and mitogen-activated protein kinase activity was assessed along with reactive oxygen species level, GSH activity, and mRNA expression of endogenous antioxidant genes at the MII stage. On the day 7 after parthenogenetic activation, blastocyst formation rate was calculated and the quality of embryo and mRNA expression of development-related genes was evaluated. Results: Developmental competence was significantly poorer in the 0 µM PD-treated (control) group than in the non-treated (normal) and 10 µM PD-treated (10PD) groups. Although the reactive oxygen species level did not significantly differ between these three groups, the glutathione level and mRNA expression of antioxidant genes (superoxide dismutase 1 [SOD1], SOD2, nuclear factor erythroid 2-related factor 2 [Nrf2], and hemo oxygenase-1 [HO-1]) were significantly higher in the normal and 10PD groups than in the control group. In addition, the percentage of oocytes with defective spindle and abnormal chromosomal alignment was significantly lower and the ratio of phosphorylated p44/42 to total p44/42 was significantly higher in the normal and 10PD groups than in the control group. The total cell number per blastocyst was significantly higher in the 10PD group than in the control group. The percentage of apoptotic cells in blastocysts was highest in the control group; however, the difference was not significant. mRNA expression of development-related genes (POU domain, class 5, transcription factor 1 [POU5F1], caudal type homeobox 2 [CDX2], Nanog homeobox [NANOG]) was consistently increased by addition of PD. Conclusion: The PD effectively improves the developmental competence and quality of blastocysts by protecting porcine oocytes against oxidative stress.