• Title/Summary/Keyword: Stress-activated protein kinase

Search Result 169, Processing Time 0.03 seconds

Hepato-Protective Activities of Jasminum officinale L. var. grandiflorum Aqueous Extract via Activation of AMPK in HepG2 Cells (AMPK 활성화를 통한 소형화(素馨花) (Jasminum officinale L. var. grandiflorum) 열수 추출물의 HepG2 간세포 보호 활성)

  • Sang Mi Park;Dae Hwa Jung;Byung Gu Min;Kyung Hwan Jegal;Sung Hui Byun;Jae Kwang Kim;Sang Chan Kim
    • Herbal Formula Science
    • /
    • v.31 no.4
    • /
    • pp.231-243
    • /
    • 2023
  • Objectives : Jasminum officinale L. var. grandiflorum is used as a traditional or folk remedy in China to treat arthritis, hepatitis, duodenitis, conjunctivitis, gastritis, and diarrhea. In this study, we aimed to study the hepatocyte protective activity and molecular mechanism of Jasminum officinale L. var. grandiflorum aqueous extract (JGW) using HepG2 hepatocyte cell lines. Methods : HepG2 cells were pretreated with diverse concentrations of JGW, and then the cells were exposed to tert-butyl hydroperoxide (tBHP) for inducing oxidative stress. Hydrogen peroxide (H2O2) production, glutathione (GSH) concentration, mitochondrial membrane potential (MMP) and cell viability were measured to investigate hepato-protective effects of JGW. Phosphorylation of AMP-activated protein kinases (AMPK), acetyl coenzyme A carboxylase (ACC) and effects of compound C on cell viability were examined to observe the role of AMPK on JGW-mediated cytoprotection. Results : Pretreatment with JGW (10-300 ㎍/mL) significantly suppressed cytotoxicity induced by tBHP in a concentration dependent manner and reduced the expression of cleaved PARP and cleaved caspase-3 proteins related to apoptosis in HepG2 cells. In addition, pretreatment with JGW significantly prevented the increase in H2O2 production, GSH depletion, and lower MMP induced by tBHP. Treatment with JGW (30 minutes of incubation and concentrations of 100 and 300 ㎍/mL) increased the phosphorylation of AMPK and ACC and treatment with compound C, a chemical inhibitor of AMPK, inhibited the cytoprotective effect of JGW. Conclusions : Our results demonstrated that JGW may protect hepatocytes from oxidative stress via activation of AMPK.

JSAP1 Interacts with Kinesin Light Chain 1 through Conserved Binding Segments (JSAP1과 Kinesin Light Chain 1의 결합 및 결합부위 규명)

  • Kim, Sang-Jin;Lee, Chul-Hee;Park, Hye-Young;Yea, Sung-Su;Jang, Won-Hee;Lee, Sang-Kyeong;Park, Yeong-Hong;Cha, Ok-Soo;Moon, Il-Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.889-895
    • /
    • 2007
  • A conventional kinesin, KIF5/kinesin-I, is composed of two kinesin heavy chains (KHCs) and two kinesin light chains (KLCs) and binds directly to microtubules. KIF5 motor mediates the transport of various membranous organelles, but the mechanism how they recognize and bind to a specific cargo has not yet been completely elucidated. Here, we used the yeast two-hybrid system to identify the neuronal protein(s) that interacts with the tetratricopeptide repeats (TRP) of KLCI and found a specific interaction with JNK/stress-activated protein kinase-associated protein 1 (JSAP1/JIPP3). The yeast two-hybrid assay demonstrated that the TRP 1,2 domain-containing region of KLCI mediated binding to the leucine zipper domain of JSAP1. JSAP1 also bound to the TRP region of lac2 but not to neuronal KIF5A, KIF5C and ubiquitous KIF5B in the yeast two-hybrid assay. In addition, these proteins showed specific interactions in the GST pull-down assay and by co-immunoprecipitation. KLCI and KIF5B interacted with GST-ISAP1 fusion proteins, but not with GST alone. An antibody to JSAPI specifically co-immunoprecipitated KIF5s associated with JSAP1 from mouse brain extracts. These results suggest that JSAP1, as KLC1 receptor, is involved in the KIF5 mediated transport.

Fermented Acanthopanax koreanum Root Extract Reduces UVB- and H2O2-Induced Senescence in Human Skin Fibroblast Cells

  • Park, Min-Ja;Bae, Young-Seuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1224-1233
    • /
    • 2016
  • The present study assessed the effects of an aqueous extract of Acanthopanax koreanum root (AE) and of AE following fermentation by lactic acid bacteria (Lactobacillus plantarum and Bifidobacterium bifidum) (AEF) on human skin fibroblast HS68 cells exposed to ultraviolet B (UVB) irradiation and oxidative stress. AEF effectively antagonized the senescence-associated β-galactosidase staining and upregulation of p53 and p21Cip1/WAF1 induced by UVB or H2O2 treatment in HS68 cells. It also exhibited excellent antioxidant activities in radical scavenging assays and reduced the intracellular level of reactive oxygen species induced by UVB or H2O2 treatment. The antioxidant and antisenescent activities of AEF were greater than those of nonfermented A. koreanum extract. AEF significantly repressed the UVB- or H2O2-induced activities of matrix metalloproteinase (MMP)-1 and -3, overexpression of MMP-1, and nuclear factor κB (NF-κB) activation. This repression of NF-κB activation and MMP-1 overexpression was attenuated by a mitogen-activated protein kinase activator, suggesting that this AEF activity was dependent on this signaling pathway. Taken together, these data indicated that AEF-mediated antioxidant and anti-photoaging activities may produce anti-wrinkle effects on human skin.

Effects of Rutaecarpine on Hydrogen Peroxide-Induced Apoptosis in Murine Hepa-1c1c7 Cells

  • Lee, Sung-Jin;Ahn, Hyun-Jin;Nam, Kung-Woo;Kim, Kyeong-Ho;Mar, Woong-Chon
    • Biomolecules & Therapeutics
    • /
    • v.20 no.5
    • /
    • pp.487-491
    • /
    • 2012
  • The aim of this study was to investigate the inhibitory effects of rutaecarpine on DNA strand breaks and apoptosis induced by hydrogen peroxide ($H_2O_2$) in murine Hepa-1c1c7 cells. Oxidative DNA damage was estimated by nuclear condensation assessment, fluorescence-activated cell sorting analysis, and Comet assay. Rutaecarpine inhibited cell death induced by $500{\mu}M$ $H_2O_2$, as assessed by 4',6-diamidino-2-phenylindole (DAPI) staining. Treatment with rutaecarpine reduced the number of DNA strand breaks induced by $H_2O_2$, as assessed by DAPI staining and Comet assay, and increased quinone reductase, phosphatidylinositol 3-kinase, and pAkt protein levels, as assessed by western blotting.

Protective Effects of Pyropia yezoensis Glycoprotein against Ethanol-induced Chronic Gastric Injury in the Rat (만성적인 에탄올 섭취로 인한 쥐의 위 조직 손상에서 방사무늬 김(Pyropia yezoensis)의 보호효과)

  • Soma, Saeidi;Choi, Jeong Wook;Lee, Min Kyeong;Kim, Young Min;Kim, In Hye;Nam, Taek Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.6
    • /
    • pp.765-769
    • /
    • 2014
  • We examined the protective effects of Pyropia yezoensis glycoprotein (PYGP) against ethanol-induced gastric damage. The experimental animals were divided into four groups. They were treated with distilled water (control), ethanol alone (EtOH), ethanol + PYGP 150 mg/kg BW (EtOH+150), or ethanol + PYGP 300 mg/kg BW (EtOH+300). The groups were treated for 4 weeks. We measured mitogen-activated protein kinase (MAPK), the apoptotic signaling pathway, and PARP activity in gastric tissues obtained from the rats. Ethanol consumption increased apoptotic signal activity and ERK, JNK, and p38 phosphorylation. PYGP reduced the apoptotic signaling pathway activity and ERK, JNK, and p38 phosphorylation. Furthermore, PYGP regulated Bcl-2 family expression. In light of these findings, PYGP appears to prevent ethanol-induced gastric injury and oxidative stress.

Korean Red Ginseng water extract inhibits COX-2 expression by suppressing p38 in acrolein-treated human endothelial cells

  • Lee, Seung Eun;Park, Yong Seek
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.34-39
    • /
    • 2014
  • Cigarette smoke is considered a major risk factor for vascular diseases. There are many toxic compounds in cigarette smoke, including acrolein and other ${\alpha},{\beta}$-unsaturated aldehydes, which are regarded as mediators of inflammation and vascular dysfunction. Furthermore, recent studies have revealed that acrolein, an ${\alpha},{\beta}$-unsaturated aldehyde in cigarette smoke, induces inflammatory mediator expression, which is known to be related to vascular diseases. In this study, we investigated whether Korean Red Ginseng (KRG) water extract suppressed acrolein-induced cyclooxygenase (COX)-2 expression in human umbilical vein endothelial cells (HUVECs). Acrolein-induced COX-2 expression was accompanied by increased levels of phosphorylated p38 in HUVECs and KRG inhibited COX-2 expression in HUVECs. These results suggest that KRG suppresses acrolein-induced COX-2 expression via inhibition of the p38 mitogen-activated protein kinase signaling pathway. In addition, KRG exhibited an inhibitory effect on acrolein-induced apoptosis, as demonstrated by annexin Vepropidium iodide staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. Consistent with these results, KRG may exert a vasculoprotective effect through inhibition of COX-2 expression in acrolein-stimulated human endothelial cells.

Comparison of Nelumbinis Semen Extract with Hypericum Perforatum and Fluoxetine in Animal Model of Depression (연자육의 항우울 효과 및 프로티옴 분석을 통한 기전 연구)

  • Lee, Jin-Woo;Hong, Moo-Chang;Shin, Min-Kyu;Bae, Hyun-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.830-843
    • /
    • 2006
  • Clinical evidence suggests that Nelumbinis Semen extracts have antidepressive properties and may offer an interesting alternative for the treatment of mood disorders. It was the aim of the present study to compare the effects of Nelumbinis Semen extracts with those of fluoxetine and hypericum perforatum extract in the rat forced swimming test (FST) and chronic mild stress (CMS), a model of depression. In the FST, p.o. administration of Nelumbinis Semen extracts (1 mg) induced a statistically significant reduction of immobility. The active behaviors in that test did not reflect decreased general activity because Nelumbinis Semen extracts failed to alter the locomotor activity of rats, measured in the open field test. Moreover Nelumbinis Semen extracts was superior to fluoxetine and hypericum perforatum extract in the incidence of sexual side-effects. These effects of Nelumbinis Semen extracts on the rat behavior is to be ascribed to increased Cytochrome c oxidase polypeptide Vla-liver, Mitogen-activated protein kinase 1 , Adenylosuccinate synthetase, and Aldehyde dehydrogenase in rat hippocampus.

Neuroprotective mechanism of corydaline in glutamate-induced neurotoxicity in HT22 cells

  • Baskar Selvaraj;Dae Won Kim;Ki-Yeon Yoo;Keunwan Park;Thi Thu Thuy Tran;Jae Wook Lee;Heesu Lee
    • International Journal of Oral Biology
    • /
    • v.49 no.1
    • /
    • pp.10-17
    • /
    • 2024
  • Glutamate-mediated oxidative stress causes neuronal cell death by increasing intracellular Ca2+ uptake, reactive oxidative species (ROS) generation, mitogen-activated protein kinase (MAPK) activation, and translocation of apoptosis-inducing factor (AIF) to the nucleus. In the current study, we demonstrated that corydaline exerts potent neuroprotective effects against glutamate-induced neurotoxicity. Treatment with 5 mmol/L glutamate increased cellular Ca2+ influx, ROS generation, MAPK activation, and AIF translocation. In contrast, corydaline treatment decreased cellular Ca2+ influx and ROS generation. Western blot analysis revealed that glutamate-mediated MAPK activation was attenuated by corydaline treatment. We further demonstrated that corydaline treatment inhibited the glutamate-mediated translocation of AIF to the nucleus. We propose that corydaline is a promising lead structure for the development of safe and effective neuroprotectants.

Butyrate Ameliorates Lipopolysaccharide-induced Myopathy through Inhibition of JNK Pathway and Improvement of Mitochondrial Function in C2C12 Cells (C2C12 세포에서 lipopolysaccharide에 의해 유도된 근육위축증에 대한 butyrate의 개선효과: JNK 신호전달 억제와 미토콘드리아의 기능 개선)

  • Pramod, Bahadur KC;Kang, Bong Seok;Jeoung, Nam Ho
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.464-474
    • /
    • 2021
  • Inflammation induced by metabolic syndromes, cancers, injuries, and sepsis can alter cellular metabolism by reducing mitochondrial function via oxidative stress, thereby resulting in neuropathy and muscle atrophy. In this study, we investigated whether butyrate, a short chain fatty acid produced by gut microbiota, could prevent mitochondrial dysfunction and muscle atrophy induced by lipopolysaccharide (LPS) in the C2C12 cell line. LPS-activated MAPK signaling pathways increased the levels of the mitochondrial fission signal, p-DRP1 (Ser616), and the muscle atrophy marker, atrogin 1. Interestingly, butyrate significantly inhibited the phosphorylation of JNK and p38 and reduced the atrogin 1 level in LPS-treated C2C12 cells while increasing the phosphorylation of DRP1 (Ser637) and levels of mitofusin2, which are both mitochondrial fusion markers. Next, we investigated the effect of MAPK inhibitors, finding that butyrate had the same effect as JNK inhibition in C2C12 cells. Also, butyrate inhibited the LPS-induced expression of pyruvate dehydrogenase kinase 4 (PDK4), resulting in decreased PDHE1α phosphorylation and lactate production, suggesting that butyrate shifted glucose metabolism from aerobic glycolysis to oxidative phosphorylation. Finally, we found that these effects of butyrate on LPS-induced mitochondrial dysfunction were caused by its antioxidant effects. Thus, our findings demonstrate that butyrate prevents LPS-induced muscle atrophy by improving mitochondrial dynamics and metabolic stress via the inhibition of JNK phosphorylation. Consequently, butyrate could be used to improve LPS-induced mitochondrial dysfunction and myopathy in sepsis.

Gynostemma pentaphyllum extract and Gypenoside L enhance skeletal muscle differentiation and mitochondrial metabolism by activating the PGC-1α pathway in C2C12 myotubes

  • Kim, Yoon Hee;Jung, Jae In;Jeon, Young Eun;Kim, So Mi;Oh, Tae Kyu;Lee, Jaesun;Moon, Joo Myung;Kim, Tae Young;Kim, Eun Ji
    • Nutrition Research and Practice
    • /
    • v.16 no.1
    • /
    • pp.14-32
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Peroxisome proliferator-activated receptor-gamma co-activator-1α (PGC-1α) has a central role in regulating muscle differentiation and mitochondrial metabolism. PGC-1α stimulates muscle growth and muscle fiber remodeling, concomitantly regulating lactate and lipid metabolism and promoting oxidative metabolism. Gynostemma pentaphyllum (Thumb.) has been widely employed as a traditional herbal medicine and possesses antioxidant, anti-obesity, anti-inflammatory, hypolipemic, hypoglycemic, and anticancer properties. We investigated whether G. pentaphyllum extract (GPE) and its active compound, gypenoside L (GL), affect muscle differentiation and mitochondrial metabolism via activation of the PGC-1α pathway in murine C2C12 myoblast cells. MATERIALS/METHODS: C2C12 cells were treated with GPE and GL, and quantitative reverse transcription polymerase chain reaction and western blot were used to analyze the mRNA and protein expression levels. Myh1 was determined using immunocytochemistry. Mitochondrial reactive oxygen species generation was measured using the 2'7'-dichlorofluorescein diacetate assay. RESULTS: GPE and GL promoted the differentiation of myoblasts into myotubes and elevated mRNA and protein expression levels of Myh1 (type IIx). GPE and GL also significantly increased the mRNA expression levels of the PGC-1α gene (Ppargc1a), lactate metabolism-regulatory genes (Esrra and Mct1), adipocyte-browning gene fibronectin type III domain-containing 5 gene (Fndc5), glycogen synthase gene (Gys), and lipid metabolism gene carnitine palmitoyltransferase 1b gene (Cpt1b). Moreover, GPE and GL induced the phosphorylation of AMP-activated protein kinase, p38, sirtuin1, and deacetylated PGC-1α. We also observed that treatment with GPE and GL significantly stimulated the expression of genes associated with the anti-oxidative stress response, such as Ucp2, Ucp3, Nrf2, and Sod2. CONCLUSIONS: The results indicated that GPE and GL enhance exercise performance by promoting myotube differentiation and mitochondrial metabolism through the upregulation of PGC-1α in C2C12 skeletal muscle.