• Title/Summary/Keyword: Stress-Strain Curves

Search Result 499, Processing Time 0.024 seconds

Reliable experimental data as a key factor for design of mechanical structures

  • Brnic, Josip;Krscanski, Sanjin;Brcic, Marino;Geng, Lin;Niu, Jitai;Ding, Biao
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.245-256
    • /
    • 2019
  • The experimentally determined mechanical behavior of the material under the prescribed service conditions is the basis of advanced engineering optimum design. To allow experimental data on the behavior of the material considered, uniaxial stress tests were made. The aforementioned tests have enabled the determination of mechanical properties of material at different temperatures, then, the material's resistance to creep at various temperatures and stress levels, and finally, insight into the uniaxial high cyclic fatigue of the material under different applied stresses for prescribed stress ratio. Based on fatigue tests, using modified staircase method, fatigue limit was determined. All these data contributes the reliability of the use of material in mechanical structures. Data representing mechanical properties are shown in the form of engineering stress-strain diagrams; creep behavior is displayed in the form of creep curves while fatigue of the material is presented in the form of S-N (maximum applied stress versus number of the cycles to failure) curve. Material under consideration was 18CrNi8 (1.5920) steel. Ultimate tensile strength and yield strength at room temperature and at temperature of $600^{\circ}C$: [${\sigma}_{m,20/600}=(613/156)MPa$; ${\sigma}_{0.2,20/600}=(458/141)MPa$], as well as endurance (fatigue) limit at room temperature and stress ratio of R = -1 : (${\sigma}_{f,20,R=-1}=285.1MPa$).

Nonlinear analysis and tests of steel-fiber concrete beams in torsion

  • Karayannis, Chris G.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.4
    • /
    • pp.323-338
    • /
    • 2000
  • An analytical approach for the prediction of the behaviour of steel-fiber reinforced concrete beams subjected to torsion is described. The analysis method employs a special stress-strain model with a non-linear post cracking branch for the material behaviour in tension. Predictions of this model for the behaviour of steel-fiber concrete in direct tension are also presented and compared with results from tests conducted for this reason. Further in this work, the validation of the proposed torsional analysis by providing comparisons between experimental curves and analytical predictions, is attempted. For this purpose a series of 10 steel-fiber concrete beams with various cross-sections and steel-fiber volume fractions tested in pure torsion, are reported here. Furthermore, experimental information compiled from works around the world are also used in an attempt to establish the validity of the described approach based on test results of a broad range of studies. From these comparisons it is demonstrated that the proposed analysis describes well the behaviour of steel-fiber concrete in pure torsion even in the case of elements with non-rectangular cross-sections.

General stress-strain model for concrete or masonry response under uniaxial cyclic compression

  • La Mendola, Lidia;Papia, Maurizio
    • Structural Engineering and Mechanics
    • /
    • v.14 no.4
    • /
    • pp.435-454
    • /
    • 2002
  • The paper proposes analytical forms able to represent with very good approximation the constitutive law experimentally deducible by means of uniaxial cyclic compressive tests on material having softening post-peak behaviour in compression and negligible tensile strength. The envelope, unloading and reloading curves characterizing the proposed model adequately approach structural responses corresponding to different levels of nonlinearity and ductility, requiring a not very high number of parameters to be calibrated experimentally. The reliability of the model is shown by comparing the results that it is able to provide with the ones analytically deduced from two reference models (one for concrete, another for masonry) available in the literature, and with experimental results obtained by the authors in the framework of a research in progress.

Strength and Mechanical Characteristics of Fiber-Reinforced Polymer Concrete (섬유보강 폴리머 콘크리트의 강도 및 역학적 특성)

  • 오병환
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.3
    • /
    • pp.147-155
    • /
    • 1992
  • 최근들어 성능이 우수하고 품질이 높은 새로운 건설소재를 개발하려는 노력이 계속되고 있다. 본 논문에서는 고강도화 및 연성확보를 위하여 폴리머 콘크리트에 섬유를 혼입한 섬유보강 폴리머 콘크리트를 제조하여 강도 및 역학적 특성을 규명하고자 하였다. 이를 위하여 포괄적인 실험연구를 수행하였으며 주요실험변수로는 강섬유의 혼입량과 채움재(filler)의 혼입량, 그리고 양생온도를 주요변수로 선정하였다. 강섬유의 혼입량은 체적비로 0%, 1%, 2%로 변화시켰으며, 채움재와 수지의 비는 1.0과 1.5로 하였다. 본 연구결과 섬유의 혼입으로 인하여 압축강도, 휨강도, 인장강도 모두 증가하였으며, 특히 인장강도의 증가가 더 크게 나타났다. 양생온도가 증가한 경우 폴리머의 중합반응이 좋아져 강도가 증가하였다. 또한 본 논문에서는 섬유보강 폴리머 콘크리트의 응력-변형도 관계곡선을 도축하였으며, 이것은 구조설계시 중요한 기초가 될 것으로 사료된다.

The Effect of globule size on the Mechanical Properties in Reheating Process of Aluminium Alloys (알루미늄소재의 재가열 공정에서 구상화의 크기가 기계적 성질에 미치는 영향)

  • 박상문;강충길
    • Transactions of Materials Processing
    • /
    • v.11 no.2
    • /
    • pp.155-164
    • /
    • 2002
  • One of the important steps on semi-solid forming Is the reheating process of raw materials to the semi-solid state. This Process is not only necessary to achieve the required SSM billet state, but also to contro1 the microstructure of the billet. In reheating process, the globule size is determined by the holding time of last heating stage. Therefore, some experiments to investigate the relationship between the mechanical properties and the holding time in the last heating stage was performed. The alloys used in this experiment were 357, 319 and A390 alloys. The experiments of reheating were performed by using an Induction heating system with the capacity of 50kw. This paper shows the evolution of the microstructure according to the holding time of last reheating stage. Furthermore, to evaluate the effect of globule size controlled by holding time in last heating stage uniaxial tension test was performed. The strain-stress curves were plotted according to the holding time.

The Effect of Specimen Size on Liquid Segregation in Deformation Behavior of Mushy State Material (고액공존재료의 변형거동에서 재료의 크기가 액상편석에 미치는 영향)

  • 윤성원;서판기;강충길
    • Transactions of Materials Processing
    • /
    • v.12 no.2
    • /
    • pp.94-101
    • /
    • 2003
  • For the optimal net shape forging of S semi-solid materials (SSM), it is important to predict the deformation behavior and defects of materials. Among these defects, liquid segregation is detrimental to produce products with good mechanical properties. Moreover, to apply a numerical method to thixoforging, it is very important to prevent a liquid segregation during forming process. The liquid segregation phenomena in deformation behavior of semi-solid material with variation of test specimen size were studied. The SSM compression tests were performed by dynamic material test system with a furnace. Stress-strain curves and microstructures of SSM were investigated, and Porosities were analyzed to evaluate the effects of experiment parameters on liquid segregation.

The estimation for Shear Deformation Analysis of Reinforced Concrete members using Reliability Theory. (신뢰성이론을 이용한 철근 콘크리트 부재의 전단변형 해석에 관한 평가)

  • 최광진;장일영;송재호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.559-564
    • /
    • 1998
  • The object of this thesis is an analytical study on shear deformation of reinforced concrete members using monte carlo method. Using the established experimental data that has been presented in various documents the stress-strain relationships curves of reinforced concrete (300kgf/$\textrm{cm}^2$~400kgf/$\textrm{cm}^2$) models are proposed. Finally, the theoretical values calculated using the analytical method developed in this study have been investigated in comparison with the experimental ones which were carried out earlier in order to prove its validity. From the results it has been shown that theoretical values agree quite well with experimental ones, and it could be pointed out that the presented analytical method is widely acceptable for the practical analysis of shear displacement of reinforced concrete members.

  • PDF

Implication of Dynamic Materials and Softening Models to the FEM Analysis of SAF2507 Hot Forging (동적재료모델 및 연화모델을 도입한 SAF 2507의 열간단조 유한요소해석)

  • 방원규;정재영;장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.195-198
    • /
    • 2003
  • High temperature deformation and softening behavior of SAF 2507 super duplex stainless steel (SDSS) has been investigated in connection with an FEM analysis of hot forging process. Flow curves at various strain rates and temperatures were determined first from compression tests, and the kinetics of dynamic recrystallization were also formulated through the analysis of load relaxation test results. Applying the dynamic materials and proposed by Prasad et al., it was possible to determine the characteristics of deformation behavior effectively at a given condition of deformation. Constitutive relations and recrystallization kinetics formulated from the test results were then implemented in a commercial FEM code. Flow stress compensation formulated upon the volume fraction of recrystallization and adiabatic heating was found to improve significantly the FEA solutions in predicting the forming load and the distribution of recrystallized volume fraction after forging.

  • PDF

An Analytical Study of the Flexural Deformation for High Strength Concrete Structures using Reliability Theory (신뢰성 이론을 이용한 500kgf/$\textrm{cm}^2$의 고강도콘크리트 구조물에 대한 휨변형의 해석적 연구)

  • 송재호;최광진;김민웅;홍원기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.231-236
    • /
    • 1995
  • The object of this thesis is an analytical study on flexural deformation of high strength concrete structures using reliability theory. Using the established experimental data that have been presented in various documents the stress-strain relationship curves of high strength(500kgf/$\textrm{cm}^2$)models are proposed. Based on both methods of logarithm regression analysis and multiple regression analysis adopted in order to establish the relationships between design parameters, response random variables and flexural deformation analyzed using Monte Carlo simulation and Simpson composite formula. Additional random variables are introduced to incorporate both the confidence in the analytical accuracy of engineering mechanics associated with structural response quantities and the uncertainty in the construction quality control. The result is expected to accomodate other important design parameter of high strength concrete design in treating reliability theory that practicing engineers, structural engineering often face.

  • PDF

Confined Model of High-Strength Reinforced Concrete Tied Columns (고강도 철근콘크리트 띠철근 기둥의 구속모델)

  • 이희수;한범석;신성우;반병렬;이광수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.923-928
    • /
    • 2002
  • Experimental and analytical study were conducted to develop the confined model of reinforced high strength concrete tied columns subjected to monotonically increasing concentric axial compression. Twenty-one large-scale columns(260$\times$260$\times$1200mm) used high strength concrete of 50 and 85MPa were fabricated to simulate an actual structural members size. Test results indicated that gains of strength and ductility of high strength concrete columns could be increased, if efficient arrangements and volumetric ratios of transverse reinforcements were provided. The proposed model satisfactorily predicted the experimental stress-strain curves for high strength concrete up to 100MPa.

  • PDF