• Title/Summary/Keyword: Stress-Deformation Analysis

Search Result 1,805, Processing Time 0.033 seconds

Basic Study on Impact Analysis of Automobile (자동차 충돌 해석에 관한 기초 연구)

  • Cho, Jae-Ung;Min, Byung-Sang;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.64-70
    • /
    • 2009
  • This study is to analyze the impact of automotive body with computer simulation. The total deformation, equivalent strain and strain and principal stress are analyzed respectively in case of front, rear and side impacts. The maximum total deformation of side impact is more than 6 times as large as that of rear impact. The maximum equivalent strain or stress of side impact is more than 4 times as large as that of rear impact. These deformation, strain and stress of front impact are a little more than those of rear impact. The maximum principal stress of side impact is more than 4.5 times as large as that of rear impact. This stress of front impact is a little more than that of rear impact.

  • PDF

자전거 프레임 특정부분의 보강효과와 프레임에 미치는 응력과 변형 연구

  • Kim, Tae-Hun;Yang, Dong-Min;Ha, Yun-Su
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.207-211
    • /
    • 2015
  • In this paper, 2 kinds of models about bike frame are simulated with static structural analysis. A bike frame with diamond type is compared with another model that Down tube is eliminated from original diamond frame. About both types of models, Property of a material and conditions of restriction & load are the same. This study shows reinforcement effects of a partial frame by adding down tube and impacts generated by applying a load at the frame such as weak points & high stress parts as well as expected deformation. The structural result of this study indicates that the equivalent stress or total deformation decreases by 57.1% or 36.4%, respectively. Also stress concentration sites are leg connecting parts, front/rear wheels fixed region and Max deformation is generated from Seat tube. In conclusion, A Down tube is highly efficient as reinforcement than frame without non down tube. Furthermore, The safety rises in case of reducing top tube thickness and increasing a reinforcement at leg connecting parts or concentration regions.

  • PDF

Large deformation performance of the anti-seepage system connection part in earth core dam built on thick overburden

  • Yu, Xiang;Wang, Gan;Wang, Yuke;Du, Xueming;Qu, Yongqian
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.683-696
    • /
    • 2022
  • Dams are inevitably planned to be built on thick overburden with high permeability and deformability. The connection part between concrete cut-off wall in overburden and earth core in dam body is not only a key part of the anti-seepage system, but also a weak position. Large uneven settlement will be aroused at the concoction part. However, the interaction behavior and the scope of the connection part cannot be determined effectively. In this paper, numerical analysis of a high earth core dam built on thick overburden was carried out with large deformation FE method. The mechanical behavior of the connection part was detail studied. It can be drawn that there is little differences in dam integral deformation for different analysis method, but big differences were found at the connection part. The large deformation analysis method can reasonably describe the process that concrete wall penetrates into soil. The high plasticity clay has stronger ability to adapt to large uneven deformation which can reduce stress level, and stress state of concrete wall is also improved. The scope of high plasticity clay zone in the connection part can be determined according to stress level of soils and penetration depth of concrete wall.

The Optimum Design of Casting Process through Prediction and control of Thermal Deformation (주조 공정 시 열변형 예측과 제어를 통한 금형의 최적 설계에 관한 연구)

  • Choi, Bong-Hak;Kwahk, Si-Young;Kim, Jeong-Tae;Choi, Jeong-Kil;Lee, Dong-Il
    • Journal of Korea Foundry Society
    • /
    • v.25 no.5
    • /
    • pp.209-215
    • /
    • 2005
  • The design of the Metal mold casting should consider several variables such as the material properties and shape of the mold. In particular, the thermal stress generated by the thermal expansion and contraction depending on the thermal gradient of the mold causes partial plastic deformation on the mold, which causes damage or fracture of the cast. Consequently, the thermal deformation along with thermal stress leads to thermal deformation of the cast itself. In this study, the temperature analysis of the cast and mold is simulated by FDM to control the thermal deformation and stress as a result of the thermal gradient of mold. Using the results from FDM simulation, the thermal deformation and stress are analyzed by FEM and, the optimal mold design with minimum thermal deformation of the cast is suggested.

Effect of Stress-Dependent Modulus and Poisson's Ratio on Rutting Prediction in Unbound Pavement Foundations (도로기초의 Rutting 예측에 미치는 응력의존 탄성계수와 포와송비의 영향)

  • Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.15-24
    • /
    • 2007
  • This paper will present a simple approach (or predicting layer deformation of unbound pavement materials with stress-dependent material properties. The approach is based on an uncoupled formulation in which the resilient and deformation response of unbound materials are considered separately. As a result, an uncoupled approach incorporating a resilient stiffness and Poisson's ratio model is able to simulate field measured deformation in pavement foundations. In addition, a sensitivity analysis is conducted to identify the significant factors in the stress-dependent modulus and Poison's ratio model. The predicted trends of deformation from this analysis are presented and discussed.

Theoretical tensile model and cracking performance analysis of laminated rubber bearings under tensile loading

  • Chen, Shicai;Wang, Tongya;Yan, Weiming;Zhang, Zhiqian;Kim, Kang-Suk
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.75-87
    • /
    • 2014
  • To analyze the tension performance of laminated rubber bearings under tensile loading, a theoretical tension model for analyzing the rubber bearings is proposed based on the theory of elasticity. Applying the boundary restraint condition and the assumption of incompressibility of the rubber (Poisson's ratio of the rubber material is about 0.5 according the existing research results), the stress and deformation expressions for the tensile rubber layer are derived. Based on the derived expressions, the stress distribution and deformation pattern especially for the deformation shapers of the free edges of the rubber layer are analyzed and validated with the numerical results, and the theory of cracking energy is applied to analyze the distributions of prediction cracking energy density and gradient direction. The prediction of crack initiation and crack propagation direction of the rubber layers is investigated. The analysis results show that the stress and deformation expressions can be used to simulate the stress distribution and deformation pattern of the rubber layer for laminated rubber bearings in the elastic range, and the crack energy method of predicting failure mechanism are feasible according to the experimental phenomenon.

A Study on Welding Deformation of I-Beam Steel Structure by FEM Method (유한요소법에 의한 I형빔의 용접변형에 관한 연구)

  • 석한길
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.561-567
    • /
    • 2003
  • For construction of I-beam steel structures, a fillet welding is one of the main manufacturing process. However, this welding process cause some problems associated with welding residual stress and welding deformation that are harmful to the safety of structures. Accordingly, this study clarified the creation mechanism of the welding deformation on I-beam steel structure from the experimental results given by the FEM method. To prevent or minimize the longitudinal bending deformation, first of all, a field supervision is necessary to observe the optimal groove design. Secondly, the welding order for cooling weld zone is needed.

Deformation and stress analysis of Vertical form-fill-seal machine (파우치 포장 장비의 변형량 및 응력해석)

  • Baek, Seung-Yub;Choi, Seung-Geon;Jung, Yeon-Seung;Jang, Young-Ju
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.46-50
    • /
    • 2016
  • Beverage industry is the largest in the domestic packaging market. Usually, beverage is packed in palstic, glass, can and paper bags. However, the cost of these packaging methods are very high and the recycling are not easy to handle. Pouch packaging method is one of the packaging method to solve the drawbacks of former beverage containers. The pouch packaging methods are difficult to control, it requires a number of processes. A vertical form-fill-seal machine which is self-developed is the capable of processing in a single apparatus. In this paper, in order to develop a pouch equipment, the structure analysis was carried out for the main unit. The stress and deformation of feed unit which removes the air inside the pouch while feeding down has been analyzed. It receives the greatest impact from the rolling part. And also, the sealing unit has been analyzed. The analysis result shows that the stress and the deformation was slight to be applicable to the actual system.

Residual stresses and viscoelastic deformation of an injection molded automotive part

  • Kim, Sung-Ho;Kim, Chae-Hwan;Oh, Hwa-Jin;Choi, Chi-Hoon;Kim, Byoung-Yoon;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.183-190
    • /
    • 2007
  • Injection molding is one of the most common operations in polymer processing. Good quality products are usually obtained and major post-processing treatment is not required. However, residual stresses which exist in plastic parts affect the final shape and mechanical properties after ejection. Residual stresses are caused by polymer melt flow, pressure distribution, non-uniform temperature field, and density distribution. Residual stresses are predicted in this study by numerical methods using commercially available softwares, $Hypermesh^{TM},\;Moldflow^{TM}\;and\;ABAQUS^{TM}$. Cavity filling, packing, and cooling stages are simulated to predict residual stress field right after ejection by assuming an isotropic elastic solid. Thermo-viscoelastic stress analysis is carried out to predict deformation and residual stress distribution after annealing of the part. Residual stresses are measured by the hole drilling method because the automotive part selected in this study has a complex shape. Residual stress distribution predicted by the thermal stress analysis is compared with the measurement results obtained by the hole drilling method. The molded specimen has residual stress distribution in tension, compression, and tension from the surface to the center of the part. Viscoelastic deformation of the part is predicted during annealing and the deformed geometry is compared with that measured by a three dimensional scanner. The viscoelastic stress analysis with a thermal cycle will enable us to predict long term behavior of the injection molded polymeric parts.

A Study on the Structure Analysis Optimization of Die Cam Drive Considering the Thin Plate Hardening (박판판재 경화를 고려한 다이 캠 드라이브의 구조해석 최적화에 대한연구)

  • Lee, Jong-Bae;Kim, Seon-Sam;Woo, Chang-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5769-5777
    • /
    • 2015
  • According to the forming or bending deformation in the press die, the thin plate occurs a work-hardening, the sheet hardening and cam unit's deformation causes incomplete forming during the cam molding process by the reacting spring forces. This study treated the input parameters of the stress and strain as given properties and also used Cam forming pressure considering the sheet hardening in the forming process of the aluminum sheet. The Hyperstudy are operated be linked with the Abaqus of the finite element analysis tool and the shape of Cam were carried out with non-linear shape optimization analysis. As a result removing the deformation of plate, the cam shape were optimized under conditions reduced deformation, having a minimum stress range and the minimum deformation. Therefore, a stress-strain curve and a normal distribution of stress-thickness can be obtained and optimization could be obtained for the shape of the stress and strain on the die plate hardened cam considering the thickness and reaction force of gas spring as iteration process.