• Title/Summary/Keyword: Stress-Controlled Condition

Search Result 109, Processing Time 0.023 seconds

Experimental Study on Plane Stress Fracture Toughness and Fatigue Crack Propagation of SS304 and SS316 (SS304와 SS316의 평면응력 파괴인성치 측정과 피로 균열 전파에 대한 실험적 연구)

  • Lee, O.S.;Han, Y.S.;Yoo, S.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.61-69
    • /
    • 1997
  • A simple and relatively new experimental method is proposed to estimate the plane stress fracture toughness by using compact tension (CT) specimen. The anti-buckling plates (fabricated to prevent the buckling caused by the 45 plastic yielding around crack tip under the plane stress condition) help to determine the relatively accurate plane stress fracture toughness of two stainless steels (SS304 and SS316). The fatigue crack propagation behavior of two stainless steels under two different loading conditions such as 10Hz and 5Hz frequency fatigue loadings was investigated by using image analysis technique (IAT) which renders several technical advantages over various conventional measuring methods. It was found that the IAT could be used to estimate fatigue crack lengths more effectively. Furthermore, it was suggested that we might control the measuring time interval for fatigue crack propagation by nearly automatically controlled technical process with the help of IAT.

  • PDF

Localized deformation in sands and glass beads subjected to plane strain compressions

  • Zhuang, Li;Nakata, Yukio;Lee, In-Mo
    • Geomechanics and Engineering
    • /
    • v.5 no.6
    • /
    • pp.499-517
    • /
    • 2013
  • In order to investigate shear behavior of granular materials due to excavation and associated unloading actions, load-controlled plane strain compression tests under decreasing confining pressure were performed under drained conditions and the results were compared with the conventional plane strain compression tests. Four types of granular material consisting of two quartz sands and two glass beads were used to investigate particle shape effects. It is clarified that macro stress-strain behavior is more easily influenced by stress level and stress path in sands than in glass beads. Development of localized deformation was analyzed using photogrammetry method. It was found that shear bands are generated before peak strength and shear band patterns vary during the whole shearing process. Under the same test condition, shear band thickness in the two sands was smaller than that in one type of glass beads even if the materials have almost the same mean particle size. Shear band thickness also decreased with increase of confining pressure regardless of particle shape or size. Local maximum shear strain inside shear band grew approximately linearly with global axial strain from onset of shear band to the end of softening. The growth rate is found related to shear band thickness. The wider shear band, the relatively lower the growth rate. Finally, observed shear band inclination angles were compared with classical Coulomb and Roscoe solutions and different results were found for sands and glass beads.

Electrorheological characteristics of poly(o-ethoxy)aniline nanocomposite

  • Sung Jun Hee;Choi Hyoung Jin
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.4
    • /
    • pp.193-199
    • /
    • 2004
  • Poly(o-ethoxy)aniline (PEOA)/organoclay nanocomposite was prepared via a solvent intercalation using chloroform as a cosolvent with organically modified montmorillonite (OMMT) clay. The PEOA initially synthesized from a chemical oxidation polymerization in an acidic condition at pH = 1 was intercalated into interlayers of the clay with $25\;wt{\%}$ clay content. Electrical conductivity of the PEOA/OMMT nano­composite was found to be controlled via the intercalating process. The synthesized PEOA/OMMT nano­composite was characterized via an XRD and a TGA, and then adopted as an electrorheological (ER) material. The PEOA/OMMT synthesized with controllable electrical conductivity without a dedoping pro­cess was found to show typical ER characteristics possessing a yield stress from both steady state and dynamic measurements under an applied electric field.

Effects of process variables on morphology of palladium metal deposit in hydrochloric acid medium

  • kim Min-Seuk;Lee Jae-Chun;Kim Won-Back;Jeong Jin-Ki;Nam Chul-Woo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.642-647
    • /
    • 2003
  • Palladium is widely used for several applications and recovery of palladium from secondary sources becomes increasingly important since palladium is one of maldistributed platinum group metals. Electrochemical recovery of dense palladium metal sheet from Pd leaching solution is a simple and easily controlled method. The surface morphology of the recovered Pd metal was significantly affected by current density and temperature. Dense deposit morphology was in higher stress state regardless of preparation condition under $55^{\circ}C$. Rising temperature up to $70^{\circ}C$ had a stress releasing effect besides densification of Pd deposit.

  • PDF

Failure of Ammonia Synthesis Converter Due to Hydrogen Attack and Its On-Stream Assessment Using ToFD Method

  • Albiruni, Farabirazy;Lee, Joon-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.132-137
    • /
    • 2008
  • A failure analysis of ammonia converter which suffered hydrogen attack in two years since its initial operating time was presented. It is constructed from 2.25 Cr.1 Mo steel. Analysis showed that the failure on closing seam weld joint was due to local improper post weld heat treatment (PWHT). Improper PWHT can introduce high residual stresses in thick-walled pressure vessel. High residual stress level in weld joint is very prone to hydrogen attack for any components which are operating in hydrogen gas environment. The repair procedures based on the principle to decrease the residual stress then proposed. The repair was controlled very carefully by applying several nondestructive tests in the each stage of repair. To assure the successful of the proposed repair, after one year since repair time, high temperature ultrasonic and TOFD methods were applied on-stream to this equipment in order to evaluate its post repair condition. The two methods showed good results on the repaired area.

  • PDF

Precipitation and Recrystallization of V-Microalloyed Steel during Hot Deformation (V 첨가강의 고온변형시 석출 및 재결정에 관한 연구)

  • 조상현;김성일;유연철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.48-54
    • /
    • 1996
  • The continuous deformation , multistage deformation and stress relaxation were carried out to investigate the strain induced procipitation by torsion tests in the range of 1000∼800$^{\circ}C$, 0.05/sec∼5/sec for V-microalloyed steel. The starting temperature and time for the initiation of precipitation were determined by stress relaxation tests and the distribution of percipitates increased at higher strain rate and the mean size of precipitates was found to be about 50nm. The precipitation starting time decreased with increasing strain rate from 0.05/sec to 5 /sec and pre-strain. The effect of deformation conditions on the no-recrystallization temperature(Tnr) was determined in the multistage deformation with declining temerature. The Tnr decreased with increasing strain and strain rae. In the controlled rolling, grain refinement and precpitation hardening effects could be achieved by the alternative large pass strain at the latter half pass stage under the condition of low temperature and high strain rate.

  • PDF

A Study on the Prediction of Welding Residual Stresses and the Selection of Optimal Welding Condition using Neural Network (신경회로망을 이용한 용접잔류응력 예측 및 최적의 용접조건 선정에 관한 연구)

  • 차용훈;이연신;성백섭
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.58-64
    • /
    • 2001
  • In this study, it is developed that the system for effective prediction of residual stresses by the back-propagation algorithm using the neural network. To achieve This goal, the series experiment were carried out and measured the residual stresses using the sectional method. Using the experimental results, the optional control algorithms using a neural network should be developed in order to reduce the effect of the external disturbances during GMA welding processes. Then the results obtained from this study were compared between the measured and calculated results, weld guality might be controlled by the neural network based on backpropagation algorithm. This system can no only help to understand the interaction between the process parameters and residual stress, but also improve the quantity control for welded structures.

  • PDF

A STUDY ON THE ELASTIC DEFORMATION AND STRESS DISTRIBUTION OF THE MANDIBLE WITH OSSEOINTEGRATED IMPLANT PROSTHESES USING THREE DIMENSIONAL FINITE ELEMENT ANALYSIS METHOD (골유착성 임플랜트 보철물 장착시 하악골의 탄성변형 및 응력분포에 관한 삼차원 유한요소법적 연구)

  • Kim, Yong-Ho;Kim, Yung-Soo;Kim, Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.2
    • /
    • pp.203-244
    • /
    • 1998
  • The human mandible is always under the condition of loading by the various forces extorted by the attached muscles. The loading is an important condition of the stomatognathic system. This condition is composed of the direction and amount of forces of the masticatory muscles, which are controlled by the neuromuscular system, and always influenced by the movement of both opening and closing. Mandible is a strong foundation for the teeth or various prostheses, nevetheless it is a elastic body which accompanies deformation by the external forces on it. The elastic properties of the mandible is influenced by the various procedures such as conventional restorative treatments, osseointegrated implant treatments, reconstructive surgical procedures and so forth. Among the treatments the osseointegrated implant has no periodontal ligaments, which exist around the natural teeth to allow physiologic mobility in the alveolar socket. And so around the osseointegrated implant, there is almost no damping effect during the transmission of occlusal stress and displacements. If the osseointegrated implants are connected by the superstructure for the stabilization and effective distribution of occlusal stresses, the elastic properties of mandible is restricted according to the extent of 'splinting' by the superstructure and implants. To investigate the change of elastic behaviour of the mandible which has osseointegrated implant prosthesis of various numbers of implant installment and span of superstructre, a three dimensional finite element model was developed and analyzed with conditions mentioned above. The conclusions are as follows : 1. The displacements are primarily developed at the area of muscle attachment and distributed all around the mandible according to the various properties of bone. 2. The segmentation in the superstructure has few influence on the distribution of stress and displacement. 3. In the load case of ICP, the concentration of tensional stress was observed at the anterior portion of the ramus($9.22E+6N/m^2$) and at the lingual portion of the symphysis menti($8.36E+6N/m^2$). 4. In the load case of INC, the concentration of tensional stress was observed at the anterior portion of the ramus($9.90E+6N/m^2$) and the concentration of tensional stress was observed at the lingual portion of the symphysis menti($2.38E+6N/m^2$)). 5. In the load case of UTCP, the relatively high concentration of tensional stress($3.66E+7N/m^2$) was observed at the internal surface of the condylar neck.

  • PDF

A CONTROLLED CYCLIC LOADING ON THE SURFACE TREATED AND BONDED CERAMIC: STAIRCASE METHOD

  • Yi, Yang-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.298-306
    • /
    • 2008
  • STATEMENT OF PROBLEM: Effect of surface treatment of ceramic under loading does not appear to have been investigated. PURPOSE: The aim of this study was to investigate the effect of surface treatment of esthetic ceramic, which is performed to increase the bonding strength, on the fracture stress under controlled cyclic loading condition. MATERIAL AND METHODS: Sixty 1.0 mm-thick specimens were made from Mark II Vitablocs (Vita Zahnfabrik, Germany) and divided into 3 groups: polished (control), sandblasted, and etched. Specimens of each group were bonded to a dentin analog material base including micro-channels to facilitate the flow of water to the bonding interface. Bonded ceramics were cyclically loaded with a flat-end piston in the water (500,000 cycles, 15Hz). Following completion of cyclic loading, specimens were examined for subsurface crack formation and subsequent stress was determined and loaded to next specimen by the staircase method according to the crack existence. RESULTS: There were significant differences of mean fatigue limit in the sandblasted (222.86 ${\pm}$ 23.42 N) and etched group (222.86 ${\pm}$ 14.16 N) when compared to polished group (251.43 ${\pm}$ 10.6 N) (P<.05; Wald-type pair-wise comparison and post hoc Bonferroni test). Of cracked specimens, surface treated group showed longer crack propagation after 24 hours. All failures originated from the radial cracking without cone crack. Fracture resistance of this study was very low and comparable to failure load in the oral cavity. CONCLUSION: Well controlled cyclic loading could induce clinically relevant cracks and fracture resistance of Mark II ceramic was relatively low applicable only to anterior restorations. Surface treatment of inner surface of feldspathic porcelain in the matsicatory area could influence lifetime of restorations.

Effect of Soil Moisture and Temperature on Emergence of Forage Grasses (목초의 출아에 미치는 온도와 토양수분의 영향)

  • 윤세형
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.1
    • /
    • pp.27-34
    • /
    • 1998
  • The present study elucidates of the effect of less water stress in different temperature condition on the emergence of forage grasses. Water condition was controlled to 30% and 60% by water content by wet soil. The mean temperature is conducted by $10^{\circ}C$ (out side) and $20^{\circ}C$ (glass house). The results are as follows: 1. Mean emergence time and emergence day after sowing of grasses were greatly influenced by water content of soil and temperature. It was suggested that temperature was very important for the light competition with weed in the early growth of grass. 2. Accumulatied emergence of grasses was nat afected by temperature, but it was sensitively affected by water content of soil.

  • PDF