• Title/Summary/Keyword: Stress- ratio

Search Result 4,014, Processing Time 0.031 seconds

Engineering characteristics of dune sand-fine marble waste mixtures

  • Qureshi, Mohsin U.;Mahmood, Zafar;Farooq, Qazi U.;Qureshi, Qadir B.I.L.;Al-Handasi, Hajar;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.547-557
    • /
    • 2022
  • Dune sands are poorly graded collapsible soils lacking fines. This experimental study explored the technical feasibility of sustainable invigoration of fine waste materials to improve the geotechnical properties of dune sand. The fine waste considered in this study is fine marble waste. The fine waste powder was mixed with dune sand at different contents (5, 10,15, 20, 25, 50%), where the gradation, void ratio, compaction, and shear strength characteristics were assessed for each fine marble waste -dune sand blend. The geotechnical properties of the dune sand-fine marble waste mix delineated in this study reveal the enhancement in compaction and gradation characteristics of dune sand. According to the results, the binary mixture of dune sand with 20% of fine marble waste gives the highest maximum dry density and results in shear strength improvement. In addition, a numerical study is conducted for the practical application of the binary mix in the field and tested for an isolated shallow foundation. The elemental analysis of the fine marble waste confirms that the material is non-contaminated and can be employed for engineering applications. Furthermore, the numerical study elucidated that the shallow surface replacement of the site with the dune sand mixed with 20% fine marble waste gives optimal performance in terms of stress generation and settlement behavior of an isolated footing. For a sustainable mechanical performance of the fine marble waste mixed sand, an optimum dose of 20% fine marble waste is recommended, and some correlations are proposed. Thus, for improving dune sand's geotechnical characteristics, the addition of fine marble waste to the dune sand is an environment-friendly solution.

A computational investigation on flexural response of laminated composite plates using a simple quasi-3D HSDT

  • Draiche, Kada;Selim, Mahmoud M.;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.697-711
    • /
    • 2021
  • In this work, a simple quasi 3-D parabolic shear deformation theory is developed to examine the bending response of antisymmetric cross-ply laminated composite plates under different types of mechanical loading. The main feature of this theory is that, in addition to including the transverse shear deformation and thickness stretching effects, it has only five-unknown variables in the displacement field modeling like Mindlin's theory (FSDT), yet satisfies the zero shear stress conditions on the top and bottom surfaces of the plate without requiring a shear correction factor. The static version of principle of virtual work was employed to derive the governing equations, while the bending problem for simply supported antisymmetric cross-ply laminated plates was solved by a Navier-type closed-form solution procedure. The adequacy of the proposed model is handled by considering the impact of side-to-thickness ratio on bending response of plate through several illustrative examples. Comparison of the obtained numerical results with the other shear deformation theories leads to the conclusion that the present model is more accurate and efficient in predicting the displacements and stresses of laminated composite plates.

Seismic retrofit of steel structures with re-centering friction devices using genetic algorithm and artificial neural network

  • Mohamed Noureldin;Masoum M. Gharagoz;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.167-184
    • /
    • 2023
  • In this study, a new recentering friction device (RFD) to retrofit steel moment frame structures is introduced. The device provides both self-centering and energy dissipation capabilities for the retrofitted structure. A hybrid performance-based seismic design procedure considering multiple limit states is proposed for designing the device and the retrofitted structure. The design of the RFD is achieved by modifying the conventional performance-based seismic design (PBSD) procedure using computational intelligence techniques, namely, genetic algorithm (GA) and artificial neural network (ANN). Numerous nonlinear time-history response analyses (NLTHAs) are conducted on multi-degree of freedom (MDOF) and single-degree of freedom (SDOF) systems to train and validate the ANN to achieve high prediction accuracy. The proposed procedure and the new RFD are assessed using 2D and 3D models globally and locally. Globally, the effectiveness of the proposed device is assessed by conducting NLTHAs to check the maximum inter-story drift ratio (MIDR). Seismic fragilities of the retrofitted models are investigated by constructing fragility curves of the models for different limit states. After that, seismic life cycle cost (LCC) is estimated for the models with and without the retrofit. Locally, the stress concentration at the contact point of the RFD and the existing steel frame is checked being within acceptable limits using finite element modeling (FEM). The RFD showed its effectiveness in minimizing MIDR and eliminating residual drift for low to mid-rise steel frames models tested. GA and ANN proved to be crucial integrated parts in the modified PBSD to achieve the required seismic performance at different limit states with reasonable computational cost. ANN showed a very high prediction accuracy for transformation between MDOF and SDOF systems. Also, the proposed retrofit showed its efficiency in enhancing the seismic fragility and reducing the LCC significantly compared to the un-retrofitted models.

Factors Influencing Fall Experiences among the Older Adults in Community: Using the 2021 Community Health Survey (지역사회 거주 노인의 낙상 경험 영향요인: 2021년 지역사회건강조사 활용)

  • Jun, Hye Jung;Choi, Ju Youn
    • Korean Journal of Occupational Health Nursing
    • /
    • v.32 no.2
    • /
    • pp.79-88
    • /
    • 2023
  • Purpose: This study aims to identify the factors that influence the experience of falls among older adults living in the community. Methods: The study participants were 70,887 65-year-olds who participated in the 2021 Community Health Survey. The study employed the Rao-scott x 2 test to examine the variation in fall experiences based on the characteristics of the older adults. Multiple logistic regression analysis was conducted to investigate these characteristics' impact on older adults' fall experiences. Results: The proportion of subjects in fall experience was 16.6%. The factors influencing the subject's fall experience were sex (odds ratio [OR]=1.47, 95% confidence interval [CI]=1.37~1.57), age (OR=1.48, 95% CI=1.34~1.65), family structure (OR=1.23, 95% CI=1.15~1.31), body mass index (OR=1.13, 95% CI=1.06~1.20), diabetes (OR=1.12, 95% CI=1.06~1.20), depression experiences (OR=1.56, 95% CI=1.42~1.70), stress (OR=1.12, 95% CI=1.05~1.19), subjective health status (OR=1.77, 95% CI=1.63~1.92), life satisfaction (OR=1.57, 95% CI=1.41~1.76), and chewing discomfort (OR=1.29, 95% CI=1.21~1.38). Conclusion: Efforts should be made to effectively educate and develop various programs aimed at reducing falls among older adults. It is essential to emphasize the importance of continuous and active attention to falls in the older adult population.

Assessment of geometric nonlinear behavior in composite beams with partial shear interaction

  • Jie Wen;Abdul Hamid Sheikh;Md. Alhaz Uddin;A.B.M. Saiful Islam;Md. Arifuzzaman
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.693-708
    • /
    • 2023
  • Composite beams, two materials joined together, have become more common in structural engineering over the past few decades because they have better mechanical and structural properties. The shear connectors between their layers exhibit some deformability with finite stiffness, resulting in interfacial shear slip, a phenomenon known as partial shear interaction. Such a partial shear interaction contributes significantly to the composite beams. To provide precise predictions of the geometric nonlinear behavior shown by two-layered composite beams with interfacial shear slips, a robust analytical model has been developed that incorporates the influence of significant displacements. The application of a higher-order beam theory to the two material layers results in a third-order adjustment of the longitudinal displacement within each layer along the depth of the beam. Deformable shear connectors are employed at the interface to represent the partial shear interaction by means of a sequence of shear connectors that are evenly distributed throughout the beam's length. The Von-Karman theory of large deflection incorporates geometric nonlinearity into the governing equations, which are then solved analytically using the Navier solution technique. Suggested model exhibits a notable level of agreement with published findings, and numerical outputs derived from finite element (FE) model. Large displacement substantially reduces deflection, interfacial shear slip, and stress values. Geometric nonlinearity has a significant impact on beams with larger span-to-depth ratio and a greater degree of shear connector deformability. Potentially, the analytical model can accurately predict the geometric nonlinear responses of composite beams. The model has a high degree of generality, which might aid in the numerical solution of composite beams with varying configurations and shear criteria.

Increased prevalence of periodontitis with hypouricemic status: findings from the Korean National Health and Nutrition Examination Survey, 2016-2018

  • Ji-Young Joo;Hae Ryoun Park;Youngseuk Cho;Yunhwan Noh;Chang Hun Lee;Seung-Geun Lee
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.4
    • /
    • pp.283-294
    • /
    • 2023
  • Purpose: The aim of this study was to investigate the relationship between serum uric acid (SUA) levels and the risk of periodontitis in Korean adults using data from the Korean National Health and Nutrition Examination Survey (KNHANES). Methods: This cross-sectional study used data from the KNHANES 2016-2018 and analysed 12,735 Korean adults aged ≥19 years who underwent oral examinations. Hypouricemia was defined as SUA <3 mg/dL in men and <2 mg/dL in women, and hyperuricemia was defined as SUA ≥7 mg/dL in men and ≥6 mg/dL in women. Results: The weighted prevalence of hypouricemia and hyperuricemia was 0.6% and 12.9%, respectively. The overall weighted periodontitis rate was 30.5%. The frequency of periodontitis in subjects with hypouricemia, normouricemia, and hyperuricemia were 51.1%, 30.3%, and 30.6%, respectively. Study participants with hypouricemia were significantly older, had significantly fasting blood glucose levels, and had better kidney function than non-hypouricemic participants. In univariate logistic regression analyses, hypouricemia was associated with periodontitis, but hyperuricemia was not. The fully adjusted model revealed that the adjusted odds ratio of hypouricemia for periodontitis was 1.62 (95% confidence interval, 1.13-2.33), while the relationship between hyperuricemia and periodontitis in the multivariable logistic regression model was not significant. Conclusions: The results of this study suggest that hypouricemia is associated with an increased risk of periodontitis.

An Insight Into the Recycling of Waste Flexible Polyurethane Foam Using Glycolysis

  • Woo Seok Jin;Pranabesh Sahu;Gyuri Kim;Seongrok Jeong;Cheon Young Jeon;Tae Gyu Lee;Sang Ho Lee;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.32-43
    • /
    • 2023
  • The worldwide use of polyurethane foam products generates large amounts of waste, which in turn has detrimental effects on the surroundings. Hence, finding an economical and environmentally friendly way to dispose of or recycle foam waste is an utmost priority for researchers to overcome this problem. In that sense, the glycolysis of waste flexible polyurethane foam (WFPF) from automotive seat cushions using different industrial-grade glycols and potassium hydroxide as a catalyst to produce recovered polyol was investigated. The effect of different molecular weight polyols, catalyst concentration, and material ratio (PU foam: Glycols) on the reaction conversion and viscosity of the recovered polyols was determined. The obtained recovered polyols are obtained as single or split-phase reaction products. Besides, the foaming characteristics and physical properties such as cell morphology, thermal stability, and compressive stress-strain nature of the regenerated flexible foams based on the recovered polyols were discussed. It was observed that the regenerated flexible foams displayed good seating comfort properties as a function of hardness, sag factor, and hysteresis loss compared to the reference virgin foam. With the growing demand for a sustainable and circular economy, a global valorization of glycolysis products from polyurethane scraps can be realized by transforming them into profitable substances.

Impact of viscoelastic foundation on bending behavior of FG plate subjected to hygro-thermo-mechanical loads

  • Ismail M. Mudhaffar;Abdelbaki Chikh;Abdelouahed Tounsi;Mohammed A. Al-Osta;Mesfer M. Al-Zahrani;Salah U. Al-Dulaijan
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.167-180
    • /
    • 2023
  • This work applies a four-known quasi-3D shear deformation theory to investigate the bending behavior of a functionally graded plate resting on a viscoelastic foundation and subjected to hygro-thermo-mechanical loading. The theory utilizes a hyperbolic shape function to predict the transverse shear stress, and the transverse stretching effect of the plate is considered. The principle of virtual displacement is applied to obtain the governing differential equations, and the Navier method, which comprises an exponential term, is used to obtain the solution. Novel to the current study, the impact of the viscoelastic foundation model, which includes a time-dependent viscosity parameter in addition to Winkler's and Pasternak parameters, is carefully investigated. Numerical examples are presented to validate the theory. A parametric study is conducted to study the effect of the damping coefficient, the linear and nonlinear loadings, the power-law index, and the plate width-tothickness ratio on the plate bending response. The results show that the presence of the viscoelastic foundation causes an 18% decrease in the plate deflection and about a 10% increase in transverse shear stresses under both linear and nonlinear loading conditions. Additionally, nonlinear loading causes a one-and-a-half times increase in horizontal stresses and a nearly two-times increase in normal transverse stresses compared to linear loading. Based on the article's findings, it can be concluded that the viscosity effect plays a significant role in the bending response of plates in hygrothermal environments. Hence it shall be considered in the design.

Characteristic Values of Design Parameters for Geotechnical Reliability Design (지반신뢰성 설계를 위한 설계변수의 특성치 연구)

  • Yoon, Gil-Lim;Yoon, Yeo-Won;Kim, Hong-Yeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.27-35
    • /
    • 2008
  • Geotechnical characteristic values for reliability-based design were analyzed using domestic marine clays. Analysis results indicate that there were close to mean values in oder of Student/Ovesen, Schneider and EN 1990's approach. However, it was found that the EN 1990's approach is inappropriate far estimating geotechnical characteristic value due to low reliability of estimation results. Four approaches had a trend of evaluating characteristic value conservatively with increasing of soil variability. Also, stability and settlement of breakwater subjected to nominal stress with unimproved soft grounds were computed to investigate the effects of estimated characteristic values. In case of using the Schneider's approach, the ratio of allowable bearing capacity/acting loads suggested 65% of that obtained from using the arithmetic mean approach, and showed underestimated value of 13.6% of the settlement obtained from the latter. The comparison of case designs using a representative value from arithmetic mean approach with the proposed approaches, using characteristic value showed that the former was mostly overestimated.

Influence of Taper Angle on Axial Behavior of Tapered Piles in Sand (모래지반에서 테이퍼 각도가 테이퍼말뚝의 연직거동에 미치는 영향)

  • Paik, Kyu-Ho;Lee, Jun-Hwan;Kim, Dae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.69-76
    • /
    • 2007
  • Axial behavior of tapered piles is affected by taper angle, stress state of soils, soil frictional angle and pile-soil interface friction angle. In this paper, a series of model pile load tests were performed using a calibration chamber in order to investigate the effect of taper angle on the axial response of cast-in-place tapered piles in sand. According to results of the tests, as taper angle of piles increased, the shaft load capacity of piles increased but its base load capacity decreased. The unit base load capacity of piles increased with increasing taper angle for medium sand but decreased for dense sand. The ratio of shaft to total load capacity increased with increasing taper angle and with decreasing relative density of soils. The test results also showed that total load capacity per unit pile volume increased with increasing taper angle for medium sand, but it decreased for dense sand. Therefore, it can be stated that tapered piles are economically more beneficial for medium sand than for dense sand.