• Title/Summary/Keyword: Stress time history

Search Result 220, Processing Time 0.024 seconds

Shaking table experiment on a steel storage tank with multiple friction pendulum bearings

  • Zhang, Ruifu;Weng, Dagen;Ge, Qingzi
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.875-887
    • /
    • 2014
  • The aim of the shaking table experiment is to verify the isolation effect of a storage liquid tank with multiple friction pendulum bearings. A 1:20 scale model of a real storage liquid tank that is widely used in the petroleum industry was examined by the shaking table test to compare its anchored base and isolated base. The seismic response of the tank was assessed by employing the time history input. The base acceleration, wave height and tank wall stress were used to evaluate the isolation effect. Finally, the influences of the bearing performance that characterizes the isolated tank, such as the friction force and residual displacement, were discussed.

Seismic assessment of slender high rise buildings with different shear walls configurations

  • Farghaly, Ahmed Abdelraheem
    • Advances in Computational Design
    • /
    • v.1 no.3
    • /
    • pp.221-234
    • /
    • 2016
  • The present study dictates the behavior of shear wall under a seismic event in slender high rise buildings, and studies the effect of height, location and distribution of shear wall in slender high rise building with and without boundary elements induced by the effect of an earthquake. Shear walls are located at the sides of the building, to counter the earthquake forces. This study is carried out in a 12 storeys building using SAP2000 software. The obtained results disclose that the behavior of the structure is definitely affected by the height and location of shear walls in slender high rise building. The stresses are concentrated at the limit between the shear wall region and the upper non shear wall especially for shear walls without columns. Displacements are doubled between the shear wall region and the upper non shear wall especially for shear walls without columns.

Arrival direction effects of travelling waves on nonlinear seismic response of arch dams

  • Akkose, Mehmet
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.179-199
    • /
    • 2016
  • The aim of this study is to investigate arrival direction effects of travelling waves on non-linear seismic response of arch dams. It is evident that the seismic waves may reach on the dam site from any direction. Therefore, this study considers the seismic waves arrive to the dam site with different angles, ${\theta}=0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$, and $90^{\circ}$ for non-linear analysis of arch dam-water-foundation interaction system. The N-S, E-W and vertical component of the Erzincan earthquake, on March 13, 1992, is used as the ground motion. Dam-water-foundation interaction is defined by Lagrangian approach in which a step-by-step integration technique is employed. The stress-strain behavior of the dam concrete is idealized using three-dimensional Drucker-Prager model based on associated flow rule assumption. The program NONSAP is employed in response calculations. The time-history of crest displacements and stresses of the dam are presented. The results obtained from non-linear analyses are compared with that of linear analyses.

Change of Fractured Rock Permeability due to Thermo-Mechanical Loading of a Deep Geological Repository for Nuclear Waste - a Study on a Candidate Site in Forsmark, Sweden

  • Min, Ki-Bok;Stephansson, Ove
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.187-187
    • /
    • 2009
  • Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in fractured rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the, virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this work are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model in the size of 2 km $\times$ 2 km $\times$ 800 m. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the comers of the repository. In the second part of the study, fracture data from Forsmark, Sweden is used to establish fracture network models (DFN). Stress paths obtained from the thermo-mechanical analysis were used as boundary conditions in DFN-DEM (Discrete Element Method) analysis of six DFN models at the repository level. Increases of permeability up to a factor of four were observed during thermal loading history and shear dilation of fractures was not recovered after cooling of the repository. An understanding of the stress path and potential areas of slip induced shear dilation and related permeability changes during the lifetime of a repository for spent nuclear fuel is of utmost importance for analysing long-term safety. The result of this study will assist in identifying critical areas around a repository where fracture shear slip is likely to develop. The presentation also includes a brief introduction to the ongoing site investigation on two candidate sites for geological repository in Sweden.

  • PDF

A Study on the Determination of Reference Parameter for Aircraft Impact Induced Risk Assessment of Nuclear Power Plant (원전의 항공기 충돌 리스크 평가를 위한 대표매개변수 선정 연구)

  • Shin, Sang Shup;Hahm, Daegi;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.437-450
    • /
    • 2014
  • In this study, we developed a methodology to determine the reference parameter for an aircraft impact induced risk assessment of nuclear power plant (NPP) using finite element impact analysis of containment building. The target structure used to develop the method of reference parameter selection is one of the typical Korean PWR type containment buildings. We composed a three-dimensional finite element model of the containment building. The concrete damaged plasticity model was used for the concrete material model. The steels in the tendon, rebar, and liner were modeled using the piecewise-linear stress-strain curves. To evaluate the correlations between structural response and each candidate parameter, we developed Riera's aircraft impact force-time history function with respect to the variation of the loading parameters, i.e., impact velocity and mass of the remaining fuel. For each force-time history, the type of aircraft is assumed to be a Boeing 767 model. The variation ranges of the impact velocity and remaining fuel percentage are 50 to 200m/s, and 30 to 90%, respectively. Four parameters, i.e., kinetic energy, total impulse, maximum impulse, and maximum force are proposed for candidates of the reference parameter. The wellness of the correlation between the reference parameter and structural responses was formulated using the coefficient of determination ($R^2$). From the results, we found that the maximum force showed the highest $R^2$ value in most responses in the materials. The simplicity and intuitiveness of the maximum force parameter are also remarkable compared to the other candidate parameters. Therefore, it can be concluded that the maximum force is the most proper candidate for the reference parameter to assess the aircraft impact induced risk of NPPs.

Determination of equivalent blasting load considering millisecond delay effect

  • Song, Zhan-Ping;Li, Shi-Hao;Wang, Jun-Bao;Sun, Zhi-Yuan;Liu, Jing;Chang, Yu-Zhen
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.745-754
    • /
    • 2018
  • In the analysis of the effects of rock tunnel blasting vibration on adjacent existing buildings, the model of simplified equivalent load produces higher calculation result of vibration, due to the lack of consideration of the millisecond delay effect. This paper, based on the static force equivalence principle of blasting load, proposes a new determination method of equivalent load of blasting vibration. The proposed method, based on the elastic-static force equivalence principle of stress wave, equals the blasting loads of several single blastholes in the same section of millisecond blasting to the triangle blasting load curve of the exploded equivalent elastic boundary surface. According to the attenuation law of stress wave, the attenuated equivalent triangle blasting load curve of the equivalent elastic boundary is applied on the tunnel excavation contour surface, obtaining the final applied equivalent load. Taking the millisecond delay time of different sections into account, the time-history curve of equivalent load of the whole section applied on the tunnel excavation contour surface can be obtained. Based on Sailing Tunnel with small spacing on Sanmenxia-Xichuan Expressway, an analysis on the blasting vibration response of the later and early stages of the tunnel construction is carried out through numerical simulation using the proposed equivalent load model considering millisecond delay effect and the simplified equivalent triangle load curve model respectively. The analysis of the numerical results comparing with the field monitoring ones shows that the calculation results obtained from the proposed equivalent load model are closer to the measured ones and more feasible.

High Temperature Structural Integrity Evaluation Method and Application Studies by ASME-NH for the Next Generation Reactor Design

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2061-2078
    • /
    • 2006
  • The main purpose of this paper is to establish the high temperature structural integrity evaluating procedures for the next generation reactors, which are to be operated at over 500$^{\circ}C$ and for 60 years. To do this, comparison studies of the high temperature structural design codes and assessment procedures such as the ASME-NH (USA), RCC-MR (France), DDS (Japan), and R5 (UK) are carried out in view of the accumulated inelastic strain and the creep-fatigue damage evaluations. Also the application procedures of the ASME-NH rules with the actual thermal and structural analysis results are described in detail. To overcome the complexity and the engineering costs arising from a real application of the ASME-NH rules by hand, all the procedures established in this study such as the time-dependent primary stress limits, total accumulated creep ratcheting strain limits, and the creep-fatigue damage limits are computerized and implemented into the SIE ASME-NH program. Using this program, the selected high temperature structures subjected to two cycle types are evaluated and the parametric studies for the effects of the time step size, primary load, number of cycles, normal temperature for the creep damage evaluations and the effects of the load history on the creep ratcheting strain calculations are investigated.

The Immediate Effects of Graston Instrument-Assisted Soft-Tissue Mobilization and Self-Stretching on the Muscular Properties of the Gastrocnemius in Athletes

  • Kang, Ho-Seong;Lee, Jung-Hoon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.4
    • /
    • pp.29-35
    • /
    • 2020
  • PURPOSE: This study examined the immediate effects of Graston instrument-assisted soft-tissue mobilization (GIASTM) and self-stretching on the muscular properties of the gastrocnemius in athletes. METHODS: Thirty subjects (All in their 20 s) were distributed randomly and evenly into two groups of 15 each: GIASTM and stretching. The subjects had no history of gastrocnemius damage in the previous three months. The muscle tone, stiffness, elasticity, and mechanical stress relaxation time (MSRT) of the gastrocnemius were blind-tested. RESULTS: The GIASTM group showed significant changes in all categories, while only MSRT changed significantly in the self-stretching group after intervention. A comparison of the two groups revealed significant differences in stiffness, elasticity, and MSRT (Time required for the muscle to recover after distortion after intervention in the GIASTM group. CONCLUSION: In this study, significant decreases in muscle tone and stiffness, as well as significant increases in elasticity, were observed in the gastrocnemius of the GIASTM group. On the other hand, sSelf-stretching showed significant differences in MSRT. Therefore, GIASTM is more effective in the recovery of the gastrocnemius muscle from fatigue than self-stretching. This study suggests that GIASTM can help prevent damage to the gastrocnemius in athletes and contribute to their training and rehabilitation programs.

Spectrum Characteristics and Stress Induced Birefringence of Fiber Bragg Grating Embedded into Composite Laminates (복합재 평판에 삽입된 광섬유 브래그 격자의 스펙트럼특성과 응력유도복굴절)

  • Lee, Jung-Ryul;Kim, Chun-Gon;Hong, Chang-Sun
    • Composites Research
    • /
    • v.15 no.3
    • /
    • pp.30-38
    • /
    • 2002
  • Fiber Bragg grating(FBG) like other optical fiber sensors also has the merit of embedding capability. To increase their actual value related to embedding capability, this paper reported the reliability and signal characteristics of FBGS embedded in composite laminates. The microphotographs of embedded optical fibers visualized the embedding environments of stripped optical fibers and coated optical fibers. Based on these microphotographs and cure monitoring performed using FBGs, we could understand that the main cause breaking the unique Bragg condition of low-birefrigence FBG were residual stress artier curing and reported the stale of stress/strain of optical fiber quantitatively. The cure monitoring also showed the history of splitting peak of a stripped FBG along cure processing. In addition, we could obtain a transverse insensitive grating(TIG) with ease by recoating a stripped FBG. TIG has good advantage for real-time signal processing.

Seismic Design and Analysis of Seismically Isolated KALIMER Reactor Structures (면진된 KALIMER 원자로 구조물의 내진설계 및 지진해석)

  • 이형연
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.75-92
    • /
    • 1999
  • In this paper, the seismic analysis model for seismically isolated KALIMER reactor structures is developed and the modal analysis and the seismic time history analysis are carried out for seismic isolation and non-isolation cases. To check the seismic stress limit according to the ASME Code, the equivalent seismic stress analyses are preformed using the 3-D finite element model. From the seismic stress analysis, the seismic margins are calculated for structural members. The limit of seismic load is defined to show that the maximum input acceleration ensures the structural safety for seismic load. In comparison of seismic responses between seismic isolation and non-isolation cases, the seismic isolation design gives significantly reduced acceleration responses and relative displacements between structures. The seismic margin of KALIMER reactor structure is high enough to produce the limit seismic load 0.8g.

  • PDF