• Title/Summary/Keyword: Stress thresholds in crack development

Search Result 2, Processing Time 0.02 seconds

The Optimal Method to Determine Damage Threshold of Rock using Hwangdeung Granite (황등화강암을 이용한 암석의 손상기준 결정방법 연구)

  • Jang, Bo-An;Ji, Hoon;Jang, Hyun-Shic
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.89-100
    • /
    • 2010
  • Although various methods for determination of damage threshold in rock have been suggested, clear damage thresholds were determined by some methods, but different thresholds were measured by other methods. We determined the damage thresholds in Hangdeung granite using all the methods suggested, and investigated the best methods, applicability and errors of each method. The crack initiation threshold and the crack damage threshold which are important in investigation of characteristics of crack development and failure were verified by field strength ratio method and long-term constant load test. The crack closure stress and the crack initiation stress were 57.5 MPa and 77.6 MPa, and the most exact values were yielded by crack volumetric strain. The secondary crack initiation stress was 90.6 MPa and AE event count and AE event count rate were the effective methods. The volumetric stiffness, AE event count and AE event count rate were the most effective methods for determination of crack coalescence threshold and crack coalescence stress was 110.3 MPa. The crack damage stress was 127.5 MPa and was measured correctly by volumetric stiffness and AE event count rate. The ratio between crack initiation stress and uniaxial compressive strength was 0.47 which was very similar with the FSR value of 0.46. The ratio between crack damage stress and uniaxial compressive strength was almost the same as the ratio between long-term strength and uniaxial compressive strength, indicating that the crack initiation stress and the crack damage stress measured were correct.

Evaluation of Stress Thresholds in Crack Development and Corrected Fracture Toughness of KURT Granite under Dry and Saturated Conditions (포화유무에 따른 KURT 화강암의 균열손상 기준 및 수정 파괴인성 측정(Level II Method))

  • Kim, Jin-Seop;Hong, Chang-Ho;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.256-269
    • /
    • 2020
  • The objective of this study is to evaluate the stress thresholds in crack development and the corrected fracture toughness of KURT granite under dry and saturated conditions. The stress thresholds were identified by calculation of inelastic volumetric strain from an uniaxial compression test. The corrected fracture toughness was estimated by using the Level II method (Chevron Bend specimen), suggested by ISRM (1988), in which non-linear behaviors of rock was taken into account. Average crack initiation stress(σci) and crack damage stress(σcd) under a dry condition were 91.1 MPa and 128.7 MPa. While, average crack initiation stress(σci) and crack damage stress(σcd) under a saturated condition were 58.2 MPa and 68.2 MPa. The crack initiation stress and crack damage stress of saturated ones decreased 36% and 47% respectively compared to those of dry specimens. A decrease in crack damage stress is relatively larger than that of crack initiation stress under a saturated condition. This indicates that the unstable crack growth can be more easily generated because of the saturation effect of water compared to the dry condition. The average corrected fracture toughness of KURT granite was 0.811 MPa·m0.5. While, the fracture toughness of saturated KURT granite(KCB) was 0.620 MPa·m0.5. The corrected fracture toughness of rock in saturated condition decreases by 23.5% compared to that in dry condition. It is found that the resistance to crack propagation decreases under the saturated geological condition.