• 제목/요약/키워드: Stress thresholds in crack development

검색결과 2건 처리시간 0.014초

황등화강암을 이용한 암석의 손상기준 결정방법 연구 (The Optimal Method to Determine Damage Threshold of Rock using Hwangdeung Granite)

  • 장보안;지훈;장현식
    • 지질공학
    • /
    • 제20권1호
    • /
    • pp.89-100
    • /
    • 2010
  • 암석의 손상상태를 평가하기위한 여러 방법들이 제안되어 있으나, 일부의 방법은 명확한 손상기준을 제시하기도 하지만 일부의 방법은 매우 모호하여 분석자의 주관에 따라 값이 달라지기도 한다. 그러므로 이 연구에서는 황등화강암을 대상으로 현재까지 제안된 모든 손상기준 결정방법을 적용하여, 각 방법의 적용성, 오차 및 최적의 손상기준결정 방법 등을 연구하였다. 또한 암석의 균열발달 및 파괴특성의 규명에 가장 중요한 손상기준인 균열개시응력과 균열손상응력을 FSR 및 장기 정하중 시험을 이용하여 검정하였다. 황등화강암의 균열닫힘응력과 균열개시응력은 각각 57.5 MPa, 77.6 MPa이며 균열체적변형률에서 측정하는 것이 가장 정확한 것으로 판단된다. 2차 균열개시응력은 90.6 MPa로 측정되었으며, 미소파괴음 계수 및 계수율이 균열개시응력의 측정에 가장 효과적인 것으로 판단된다. 균열결합응력 측정은 체적강성곡선, 미소파괴음 계수 및 미소파괴음 계수율이 가장 효과적인 방법으로 판단되며, 균열결합응력은 110.3 MPa이다. 균열손상응력은 체적강성곡선 및 미소파괴음 계수율에서 가장 명확히 측정되며, 약 127.5 MPa이다. 일축압축강도에 대한 비로서 나타낸 균열개시응력은 0.47로 FSR 값 0.46과 매우 유사하며, 균열손상응력은 0.77로 장기 정하중 시험을 통하여 측정된 장기 강도비 0.75~0.8과 거의 일치하여 균열개시응력 및 균열손상응력 값이 정확함을 검정하였다.

포화유무에 따른 KURT 화강암의 균열손상 기준 및 수정 파괴인성 측정(Level II Method) (Evaluation of Stress Thresholds in Crack Development and Corrected Fracture Toughness of KURT Granite under Dry and Saturated Conditions)

  • 김진섭;홍창호;김건영
    • 터널과지하공간
    • /
    • 제30권3호
    • /
    • pp.256-269
    • /
    • 2020
  • 본 연구의 목적은 KURT 화강암 시료의 포화유무에 따른 균열손상 기준과 파괴인성의 변화를 측정하는 것이다. 이를 위하여 일축압축시험을 이용한 소성체적변형률을 통해 KURT 화강암의 균열손상 기준을 도출하였다. 또한 암석의 파괴인성을 보다 신뢰성 있게 측정하기 위해 암석의 비선형적 변형에 대한 보정(Level II Method; ISRM, 1988) 을 통해 포화유무에 따른 KURT 화강암의 수정 파괴인성(corrected fracture toughness)을 측정하였다. 시험결과 건조시료의 평균 균열개시 응력(σci)과 균열손상 응력(σcd)은 91.1 MPa과 128.7 MPa이었으며, 포화시료의 평균 균열개시 응력(σci)과 균열손상 응력(σcd)은 58.2 MPa과 68.2 MPa이었다. 건조시료에 비해 포화시료의 균열개시 응력은 36% 감소하였으며 균열손상 응력은 건조시료 대비 47%나 감소되는 결과를 나타내었다. 균열손상 응력(σcd)이 상대적으로 더욱 감소하였음을 감안할 때 시료의 포화로 인해 더 낮은 응력조건에서 구조물에 대한 손상이 쉽게 발생할 수 있음을 알 수 있다. KURT 화강암의 비선형성을 고려한 수정 파괴인성은 0.811 MPa·m0.5이었으며 포화시료의 수정 파괴인성은 0.620 MPa·m0.5이었다. 즉 암석의 비선형성을 고려함으로써 파괴인성의 증가를 확인할 수 있었으며, 암석의 포화시 수정 파괴인성은 24% 감소하였다. 따라서 지하수 포화로 인해 암석 내 균열의 생성과 진전에 대한 저항성이 감소함을 알 수 있다.