• Title/Summary/Keyword: Stress signaling

Search Result 598, Processing Time 0.02 seconds

Luteolin, a Bioflavonoid Inhibits Colorectal Cancer through Modulation of Multiple Signaling Pathways: A Review

  • Pandurangan, Ashok Kumar;Esa, Norhaizan Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5501-5508
    • /
    • 2014
  • Luteolin, 3', 4', 5,7-tetrahydroxyflavone, belongs to a group of naturally occurring compounds called flavonoids that are found widely in the plant kingdom. It possesses many beneficial properties including antioxidant, anti-inflammatory, anti-bacterial, anti-diabetic and anti-proliferative actions. Colorectal cancer (CRC) is a leading cause of cancer related deaths worldwide. Many signaling pathways are deregulated during the progression of colon cancer. In this review we aimed to analyze the protection offered by luteolin on colon cancer. During colon cancer genesis, luteolin known to reduce oxidative stress thereby protects the cell to undergo damage in vivo. Wnt/${\beta}$-catenin signaling, deregulated during neoplastic development, is modified by luteolin. Hence, luteolin can be considered as a potential drug to treat CRC.

Recent Progress in Regulation of Aging by Insulin/IGF-1 Signaling in Caenorhabditis elegans

  • Lee, Hanseul;Lee, Seung-Jae V.
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.763-770
    • /
    • 2022
  • Caenorhabditis elegans has been used as a major model organism to identify genetic factors that regulate organismal aging and longevity. Insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) regulates aging in many species, ranging from nematodes to humans. C. elegans is a nonpathogenic genetic nematode model, which has been extensively utilized to identify molecular and cellular components that function in organismal aging and longevity. Here, we review the recent progress in the role of IIS in aging and longevity, which involves direct regulation of protein and RNA homeostasis, stress resistance, metabolism and the activities of the endocrine system. We also discuss recently identified genetic factors that interact with canonical IIS components to regulate aging and health span in C. elegans. We expect this review to provide valuable insights into understanding animal aging, which could eventually help develop anti-aging drugs for humans.

CHOP Deficiency Ameliorates ERK5 Inhibition-Mediated Exacerbation of Streptozotocin-Induced Hyperglycemia and Pancreatic β-Cell Apoptosis

  • Nam, Dae-Hwan;Han, Jung-Hwa;Lim, Jae Hyang;Park, Kwon Moo;Woo, Chang-Hoon
    • Molecules and Cells
    • /
    • v.40 no.7
    • /
    • pp.457-465
    • /
    • 2017
  • Streptozotocin (STZ)-induced murine models of type 1 diabetes have been used to examine ER stress during pancreatic ${\beta}$-cell apoptosis, as this ER stress plays important roles in the pathogenesis and development of the disease. However, the mechanisms linking type 1 diabetes to the ER stress-modulating anti-diabetic signaling pathway remain to be addressed, though it was recently established that ERK5 (Extracellular-signal-regulated kinase 5) contributes to the pathogeneses of diabetic complications. This study was undertaken to explore the mechanism whereby ERK5 inhibition instigates pancreatic ${\beta}$-cell apoptosis via an ER stress-dependent signaling pathway. STZ-induced diabetic WT and CHOP deficient mice were i.p. injected every 2 days for 6 days under BIX02189 (a specific ERK5 inhibitor) treatment in order to evaluate the role of ERK5. Hyperglycemia was exacerbated by co-treating C57BL/6J mice with STZ and BIX02189 as compared with mice administered with STZ alone. In addition, immunoblotting data revealed that ERK5 inhibition activated the unfolded protein response pathway accompanying apoptotic events, such as, PARP-1 and caspase-3 cleavage. Interestingly, ERK5 inhibition-induced exacerbation of pancreatic ${\beta}$-cell apoptosis was inhibited in CHOP deficient mice. Moreover, transduction of adenovirus encoding an active mutant form of $MEK5{\alpha}$, an upstream kinase of ERK5, inhibited STZ-induced unfolded protein responses and ${\beta}$-cell apoptosis. These results suggest that ERK5 protects against STZ-induced pancreatic ${\beta}$-cell apoptosis and hyperglycemia by interrupting the ER stress-mediated apoptotic pathway.

Zearalenone regulates key factors of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1-nuclear factor erythroid 2-related factor 2 signaling pathway in duodenum of post-weaning gilts

  • Cheng, Qun;Jiang, Shu zhen;Huang, Li bo;Yang, Wei ren;Yang, Zai bin
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1403-1414
    • /
    • 2021
  • Objective: This study explored the mechanism of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway under conditions of zearalenone (ZEA)-induced oxidative stress in the duodenum of post-weaning gilts. Methods: Forty post-weaning gilts were randomly allocated to four groups and fed diets supplemented with 0, 0.5, 1.0, or 1.5 mg/kg ZEA. Results: The results showed significant reductions in the activity of the antioxidant enzymes total superoxide dismutase and glutathione peroxidase and increases the malondialdehyde content with increasing concentrations of dietary ZEA. Immunohistochemical analysis supported these findings by showing a significantly increased expression of Nrf2 and glutathione peroxidase 1 (GPX1) with increasing concentrations of ZEA. The relative mRNA and protein expression of Nrf2, GPX1 increased linearly (p<0.05) and quadratically (p<0.05), which was consistent with the immunohistochemical results. The relative mRNA expression of Keap1 decreased linearly (p<0.05) and quadratically (p<0.05) in the duodenum as the ZEA concentration increased in the diet. The relative mRNA expression of modifier subunit of glutamate-cysteine ligase (GCLM) increased quadratically (p<0.05) in all ZEA treatment groups and the relative mRNA expression of quinone oxidoreductase 1 (NQO1) catalytic subunit of glutamate-cysteine ligase decreased linearly (p<0.05) and quadratically (p<0.05) in the ZEA1.0 group and ZEA1.5 group. The relative protein expression of Keap1 and GCLM decreased quadratically (p<0.05) in the duodenum as the ZEA concentration increased in the diet, respectively. The relative protein expression of NQO1 increased linearly (p<0.05) and quadratically (p<0.05) in all ZEA treatment groups in the duodenum. Conclusion: These findings suggest that ZEA regulates the expression of key factors of the Keap1-Nrf2 signaling pathway in the duodenum, which enables resistance to ZEA-induced oxidative stress. Further studies are needed to examine the effects of ZEA induced oxidative stress on other tissues and organs in post-weaning gilts.

Heat stress and stallion fertility

  • Muhammad Shakeel;Minjung Yoon
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.683-697
    • /
    • 2023
  • The threat posed by increased surface temperatures worldwide has attracted the attention of researchers to the reaction of animals to heat stress. Spermatogenesis in animals such as stallions is a temperature-dependent process, ideally occurring at temperatures slightly below the core body temperature. Thus, proper thermoregulation is essential, especially because stallion spermatogenesis and the resulting spermatozoa are negatively affected by increased testicular temperature. Consequently, the failure of thermoregulation resulting in heat stress may diminish sperm quality and increase the likelihood of stallion infertility. In this review, we emphasize upon the impact of heat stress on spermatogenesis and the somatic and germ cells and describe the subsequent testicular alterations. In addition, we explore the functions and molecular responses of heat shock proteins, including HSP60, HSP70, HSP90, and HSP105, in heat-induced stress conditions. Finally, we discuss the use of various therapies to alleviate heat stress-induced reproductive harm by modulating distinct signaling pathways.

Calcium Signaling-mediated and Differential Induction of Calmodulin Gene Expression by Stress in Oryza sativa L.

  • Phean-o-pas, Srivilai;Punteeranurak, Pornpimon;Buaboocha, Teerapong
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.432-439
    • /
    • 2005
  • $Ca^{2+}$/calmodulin transduction pathways have been implicated in mediating stress response and tolerance in plants. Here, three genes encoding calmodulin (Cam) members of the EF-hand family of $Ca^{2+}$-binding proteins were identified from Oryza sativa L. databases. Complementary DNA for each of the calmodulin genes, OsCam1, OsCam2, and OsCam3 were sequenced. OsCam1 and OsCam2 encode a conventional 148-amino acid calmodulin protein that contains four characteristic $Ca^{2+}$-binding motifs. OsCam3 encode a similar protein with a 38-amino-acid extension containing a putative prenylation site (CVIL) at the carboxyl terminus. RT-PCR showed that each of the genes is expressed in leaves and roots of 2-week old rice seedlings. By RNA gel blot analysis, OsCam1 mRNA levels strongly increased in response to NaCl, mannitol and wounding treatments. In contrast, OsCam2 mRNA levels were relatively unchanged under all conditions investigated. NaCl treatment and wounding also increased the OsCam3 mRNA level, but in a more transient manner. Our results indicate that although the expression of genes encoding different calmodulin isoforms is ubiquitous, they are differentially regulated by various stress signals. In addition, we have demonstrated that the calcium-channel blocker lanthanum chloride inhibited the induction of OsCam1 gene expression by both NaCl and mannitol treatments. These results suggest that osmotic stress induced expression of OsCam1 gene requires the $[Ca^{2+}]_{cyt}$ elevation that is known to occur in response to these stimuli.

Cytoprotective effect of Eriobotrya japonica L. against the iron-induced oxidative stress through AMPK activation (AMPK 활성화를 통한 중금속 유발 산화적 스트레스에 대한 비파엽의 세포 보호 효과)

  • Min-Jin Kim;Young-Eun Kim;Seon Been Bak;Su-Jin Bae;Kwang-Il Park;Sun-Dong Park;Young Woo Kim
    • Herbal Formula Science
    • /
    • v.32 no.1
    • /
    • pp.99-109
    • /
    • 2024
  • Objectives : In this study, we investigated the cytoprotective effect of Eriobotrya japonica L. (EJ) extract against Arachidonic acid (AA)+iron-induced oxidative stress. Methods : To confirm the cytoprotective effect of EJ against AA+iron-induced oxidative stress in HepG2 cells, it was evaluated by MTT assay, immunoblot anaylsis, and Calcein-AM/propidium iodide (PI) staining. Additionally, the mechanism of action of the cytoprotective effect was evaluated through molecular mechanisms. Results : EJ (100 ㎍/mL) inhibited Arachidonic acid (AA)+iron-induced cell death in a concentration-dependent manner. It also inhibited AA+iron-induced mitochondrial dysfunction and ROS production. EJ activated the LKB1-AMPK signaling pathway. Conclusions : In conclusion, EJ has the ability to protect liver cells from oxidative stress, indicating that it is related to AMPK-LKB1 signaling pathways.

Aged garlic extract enhances exercise-mediated improvement of metabolic parameters in high fat diet-induced obese rats

  • Seo, Dae Yun;Lee, SungRyul;Figueroa, Arturo;Kwak, Yi Sub;Kim, Nari;Rhee, Byoung Doo;Ko, Kyung Soo;Bang, Hyun Seok;Baek, Yeong Ho;Han, Jin
    • Nutrition Research and Practice
    • /
    • v.6 no.6
    • /
    • pp.513-519
    • /
    • 2012
  • Aged garlic extract (AGE) is known to have a protective effect against immune system, endothelial function, oxidative stress and inflammation. We examined the effects of exercise with and without aged garlic extract administration on body weight, lipid profiles, inflammatory cytokines, and oxidative stress marker in high-fat diet (HFD)-induced obese rats. Forty-five Sprague-Dawley rats were fed either a HFD (HFD, n = 40) or a normal diet (ND, n = 5) for 6 weeks and thereafter randomized into ND (n = 5), HFD (n = 10), HFD with AGE (n = 10), HFD with Exercise (n = 10), or HFD with Exercise+AGE (n = 10) for 4 weeks. AGE groups were administered at a dose of 2.86 g/kg body weight, orally. Exercise consisted of running 15-60 min 5 days/week with gradually increasing intensity. AGE (P<0.01), Exercise, and Exercise+AGE (P<0.001) attenuated body weight gain and food efficiency ratio compared to HFD. Visceral fat and liver weight gain were attenuated (P<0.05) with all three interventions with a greater effect on visceral fat in the Exercise+AGE than AGE (P<0.001). In reducing visceral fat (P<0.001), epididymal fat (P<0.01) and liver weight (P<0.001), Exercise+AGE was effective, but exercise showed a stronger suppressive effect than AGE. Exercise+AGE showed further additive effects on reducing visceral fat and liver weight (P<0.001). AGE significantly attenuated the increase in total cholesterol and low-density lipoprotein-cholesterol compared with HFD (P<0.05). Exercise+AGE attenuated the increase in triglycerides compared with HFD (P<0.05). Exercise group significantly decrease in C-reactive protein (P<0.001). These results suggest that AGE supplementation and exercise alone have anti-obesity, cholesterol lowering, and anti-inflammatory effects, but the combined intervention is more effective in reducing weight gain and triglycerides levels than either intervention alone.

Development of Stress-tolerant Crop Plants

  • Park, Hyung-In;Kang, Jung-Youn;Sohn, Hee-Kyung;Kim, Soo-Young
    • Journal of Plant Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.53-58
    • /
    • 2002
  • Adverse environmental conditions such as drought, high salt and cold/freezing are major factors that reduces crop productivity worldwide. According to a survey, 50-80% of the maximum potential yield is lost by these "environmental or abiotic stresses", which is approximately ten times higher than the loss by biotic stresses. Thus, improving stress-tolerance of crop plants is an important way to improve agricultural productivity, In order to develop such stress-tolerant crop plants, we set out to identify key stress signaling components that can be used to develop commercially viable crop varieties with enhanced stress tolerance. Our primary focus so far has been on the identification of transcription factors that regulate stress responsive gene expression, especially those involved in ABA-mediated stress response. Be sessile, plants have the unique capability to adapt themselves to the abiotic stresses. This adaptive capability is largely dependent on the plant hormone abscisic acid (ABA), whose level increases under various stress conditions, triggering adaptive response. Central to the response is ABA-regulated gene expression, which ultimately leads to physiological changes at the whole plant level. Thus, once identified, it would be possible to enhance stress tolerance of crop plants by manipulating the expression of the factors that mediate ABA-dependent stress response. Here, we present our work on the isolation and functional characterization of the transcription factors.n factors.

Oxidative stress and endometriosis

  • Cho, Yeon Jean;Kim, Heung Yeol
    • Kosin Medical Journal
    • /
    • v.33 no.2
    • /
    • pp.135-140
    • /
    • 2018
  • Endometriosis is an estrogen-dependent chronic inflammatory condition that affects women in their reproductive period and is associated with pelvic pain and infertility. Oxidative stress (OS) occurs when reactive oxygen stress (ROS) and anti-oxidants are in imbalance. OS is a potential factor involved in the pathophysiology of endometriosis. Iron-induced ROS may trigger a chain of events resulting in the development and progression of endometriosis. Endogenous ROS are correlated with increased cellular proliferation and ERK1/2 activation in human endometriotic cells. An oxidative environment leads to stimulation of the ERK and PI3K/AKT/mTOR signaling pathways that facilitate endometriotic lesion progression through adhesion, angiogenesis, and proliferation. OS is also known to be involved in epigenetic mechanisms in endometriosis. We summarize the recent knowledge in our understanding of the role of oxidative stress in the pathogenesis of endometriosis.