• 제목/요약/키워드: Stress rupture

검색결과 291건 처리시간 0.026초

화력 발전용 로터강의 초기 변형율이 CYCLIC 크리프 특성에 미치는 영향에 관한 연구 (A Study on the Effect of Initial Strain on Cyclic Creep Properties of Steam Turbine Rotor Steel)

  • 오세규;정순억;한상덕
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.78-86
    • /
    • 1992
  • The creep behaviors of 1%Cr-Mo-V and 12%Cr steam turbine rotor steels under static or cyclic load were examined at 600 and $700^{\circ}C$. The relationship between these two kinds of phenomena was studied and the experimental results were summarized as follows: 1) It is confirmed that the cyclic creep strain dependent on time is more available for creep, behavior analysis according to frequency change than that dependent on number of cycles, and the static creep, the special case of cyclic creep with stress ratio of 1 can be also more effectively analyzed by time-dependence. 2) The steady cyclic creep rate vs. the steady static creep rate, increases according to the increase of stress ratio, and this phenomena may occur on occasion of the decrease of the internal stress. 3) The initial strain affects on all the creep properties of the transient region, the steady state region and the rupture time in cyclic creep as well as static creep, and the quantitative relationships among them exist.

  • PDF

협착된 경동맥 내의 벽전단응력 및 혈관의 탄성적 거동 (Elastic Motion of the Blood Vessel and Wall Shear Stress in Carotid Artery with Stenosis)

  • 김창녕;오택열;최명진;정삼두
    • 한국정밀공학회지
    • /
    • 제22권9호
    • /
    • pp.179-187
    • /
    • 2005
  • The characteristics of blood flow and the interaction between the blood vessel and blood flow play important roles in plaque cap rupture and the growth of atherosclerosis which may lead directly to a heart attack or a stroke. In this study, carotid arteries with different stenoses have been numerically simulated to investigate the wall shear stress(WSS) and the elastic motion of the vessel. Blood flow has been treated as physiological, laminar and incompressible flow. To model the shear thining behavior of the blood, the Carreau-Yasuda model has been employed but the viscoelasticity of blood has not been considered. The results show that the WSS of $severe(75\%)$ stenosis is much higher than those of $25\%\;and\;50\%$ stenosis in the region of stenosis. With the increase in the stenosis thickness, the expansion ratio of the center of the stenosis decreases while the expansion ratio of the upstream region of the stenosis increases.

오스테나이트계 25Cr-20Ni 스테인리스강의 고온예변형에 의한 크리프 거동 (Creep Behavior of High Temperature Prestrain in Austenitic 25Cr-20Ni Stainless Steels)

  • 박인덕;남기우;안석환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.35-40
    • /
    • 2002
  • In the present study, we examined the influence of prestrain on creep strength of Class M alloy(STS310S) and Class A(STS310J1TB) alloys containing precipitates. Prestrain was given by prior creep at a higher stress than the following creep stresses. Creep behaviour before and after stress change and creep rate of pre-strianed specimens were compared with that of virgin specimens. Pre-straining produced the strain region where the strain rate was lower than that of a virgin specimen both for STS310J1TB and STS310S steels. The reason for this phenomenon was ascribable to the viscous motion of dislocations, the interaction between dislocations and precipitates in a STS310J1TB steel, and the interaction of dislocations with sub-boundaries in a STS310S steel which has the higher dislocation density and smaller subgrain size resulted from pre-straining at higher stress.

  • PDF

응력과 온도에 따른 ABS의 크리프특성에 관한 연구 (A Study of Creep Characteristics of ABS (Acrylonitrile Butadiene Styrene) for Different Stress Levels and Temperatures)

  • 강석춘
    • 한국정밀공학회지
    • /
    • 제29권10호
    • /
    • pp.1137-1143
    • /
    • 2012
  • Creep characteristic is an important failure mechanism when evaluating engineering materials that are soft material as polymers or used as mechanical elements at high temperatures. One of the popular thermo-plastic polymers, Acrylonitrile Butadiene Styrene (ABS) which is used broadly for machine elements material, as it has excellent mechanical properties such as impact resistance, toughness and stiffness compared to other polymers, was studied for creep characteristic at different levels of stress and temperatures. From the experimental results, the creep limit of ABS at room temperature is 80 % of tensile strength which is higher than PE and lower than PC or PMMA. Also the creep limits decreased to linearly as the temperatures increased, up to $80^{\circ}C$ which is the softening temperature of Butadiene ($82^{\circ}C$). Also the secondary stage of creep among the three creep stages for different levels of stress and temperature was non-existent which occurred for many metals by strain hardening effect.

구속상태를 고려한 반타원 표면균열의 파손평가선도 (Failure Assessment Diagrams of Semi-Elliptical Surface Crack with Constraint Effect)

  • 서헌;한태수;이형일
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.2022-2032
    • /
    • 1999
  • In recent years, the subject of remaining life assessment has drawn considerable attention in the power generation industry. In power generation systems a variety of structural components, such as steam pipes, turbine rotors, and superheater headers, typically operate at high temperatures and high pressures. Thus a life prediction methodology accounting for fracture and rupture is increasingly needed for these components. For accurate failure assessment, in addition to the single parameter such as K or J-integral used in traditional fracture mechanics, the second parameter like T-stress describing the constraint is needed. The most critical defects in such structures are generally found in the form of semi-elliptical surface cracks in the welded piping-joints. In this work, selecting the structures of surface-cracked plate and straight pipe, we first perform line-spring finite element modeling, and accompanying elastic-plastic finite element analyses. We then present a framework for including constraint effects (T-stress effects) in the R6 failure assessment diagram approach for fracture assessment.

$MgCl_2$ 수용액 중에서 SUS 304강의 SCC 특성에 관한 연구 (An Investigation of Stress Corrosion Cracking Charactistics of SUS 304 Stainless Steel in $MgCl_2$ Aqueous Solution)

  • 임우조
    • 수산해양기술연구
    • /
    • 제20권2호
    • /
    • pp.133-136
    • /
    • 1984
  • 정변위 인장시험기를 사용하여 SUS 304강 용접열 영향부의 여러 가지 염화 마그네슘용액 중에서의 SCC 발생 특성을 연구한 결과 다음과 같은 결론을 얻었다. 1) SCC 발생 잠복기간은 초기 응력강도계수 K 하(Ii) 값은 낮게 함으로써 크게 지연된다. 2) 비등 염화 마그네슘 용액 중에서의 SCC 발생은 부하와 Cl 이온의 농도에 의한 부동태 피막의 파손에 기인된다. 3) SUS 304 강 용접열 영향부의 SCC 발생 감수성은 높은 농도의 염화 마그네슘 용액일수록 온도를 낮게 함으로써 둔화된다.

  • PDF

T-형 복합 균열이 존재하는 증기발생기 전열관의 파열압력 시험 및 해석 (Experimental and Analytical Study on Burst Pressure of a Steam Generator Tube with a T-type Combination Crack)

  • 신규인;김홍덕;정한섭;최영환;박재학
    • 대한기계학회논문집A
    • /
    • 제28권2호
    • /
    • pp.158-164
    • /
    • 2004
  • Steam generator tubes experience widespread degradations such as stress corrosion cracking, wear, tube rupture, denting, fatigue and so on. The resulting damages can cause tube bursting or leak of the primary water which contains radioactivity Therefore the allowable size of the damage is required to be determined on the maintenance purpose. The burst pressure of a tube with a T-type combination crack consisting of longitudinal and circumferential cracks is obtained experimentally and analytically. Fracture parameters such as stress intensity factor and crack opening angle are investigated. Also the burst pressure for a T-type combination crack is compared with that of a single longitudinal crack to develop a length-based criteria.

초고온가스로 중간 열교환기용 Alloy 617의 장시간 크리프 변형률-시간 곡선 모델링 (Long-term Creep Strain-Time Curve Modeling of Alloy 617 for a VHTR Intermediate Heat Exchanger)

  • 김우곤;윤송남;김용완
    • 대한금속재료학회지
    • /
    • 제47권10호
    • /
    • pp.613-620
    • /
    • 2009
  • The Kachanov-Rabotnov (K-R) creep model was proposed to accurately model the long-term creep curves above $10^5$ hours of Alloy 617. To this end, a series of creep data was obtained from creep tests conducted under different stress levels at $950^{\circ}C$. Using these data, the creep constants used in the K-R model and the modified K-R model were determined by a nonlinear least square fitting (NLSF) method, respectively. The K-R model yielded poor correspondence with the experimental curves, but the modified K-R model provided good agreement with the curves. Log-log plots of ${\varepsilon}^{\ast}$-stress and ${\varepsilon}^{\ast}$-time to rupture showed good linear relationships. Constants in the modified K-R model were obtained as ${\lambda}$=2.78, and $k=1.24$, and they showed behavior close to stress independency. Using these constants, long-term creep curves above $10^5$ hours obtained from short-term creep data can be modeled by implementing the modified K-R model.

Improvement in Mechanical Properties of Cryogenically Treated WC-5 wt% NbC Hard Materials Sintered by Pulsed Current Activated Sintering

  • Jeong Han Lee;Hyun Kuk Park;Jae Cheol Park
    • 한국재료학회지
    • /
    • 제32권12호
    • /
    • pp.528-532
    • /
    • 2022
  • Recently, the necessity of designing and applying tool materials that perform machining of difficult-to-cut materials in a cryogenic treatment where demand is increasing. The objective of this study is to evaluate the performance of cryogenically treated WC-5 wt% NbC hard materials fabricated by a pulsed current activated sintering process. The densely consolidated specimens are cryogenically exposed to liquid nitrogen for 6, 12, and 24 h. All cryogenically treated samples exhibit compressive stress in the sintered body compared with the untreated sample. Furthermore, a change in the lattice constant leads to compressive stress in the specimens, which improves their mechanical performance. The cryogenically treated samples exhibit significant improvement in mechanical properties, with a 10.5 % increase in Vickers hardness and a 60 % decrease in the rupture strength compared with the untreated samples. However, deep cryogenic treatment of over 24 h deteriorates the mechanical properties indicating that excessive treatment causes tensile stress in the specimens. Therefore, the cryogenic treatment time should be controlled precisely to obtain mechanically enhanced hard materials.

THE EFFECTS OF CREEP AND HYDRIDE ON SPENT FUEL INTEGRITY DURING INTERIM DRY STORAGE

  • Kim, Hyun-Gil;Jeong, Yong-Hwan;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • 제42권3호
    • /
    • pp.249-258
    • /
    • 2010
  • Recently, many utilities have considered interim dry storage of spent nuclear fuel as an option for increasing spent fuel storage capacity. Foreign nuclear regulatory committees have provided some regulatory and licensing requirements for relatively low- and medium-burned spent fuel with respect to the prevention of spent fuel degradation during transportation and interim dry storage. In the present study, the effect of cladding creep and hydride distribution on spent fuel degradation is reviewed and performance tests with high-burned Zircaloy-4 and advanced Zr alloy spent fuel are proposed to investigate the effect of burnup and cladding materials on the current regulatory and licensing requirements. Creep tests were also performed to investigate the effect of temperature and tensile hoop stress on hydride reorientation and subsequently to examine the temperature and stress limits against cladding material failure. It is found that the spent fuel failure is mainly caused by cladding creep rupture combined with mechanical strength degradation and hydride reorientation. Hydride reorientation from the circumferential to radial direction may reduce the critical stress intensity that accelerates radial crack propagation. The results of cladding creep tests at $400^{\circ}C$ and 130MPa hoop stress performed in this study indicate that hydride reorientation may occur between 2.6% to 7.0% strain in tube diameter with a hydrogen content range of 40-120ppm. Therefore, it is concluded that hydride re-orientation behaviour is strongly correlated with the cladding creep-induced strain, which varies as functions of temperature and stress acting on the cladding.