• Title/Summary/Keyword: Stress protein

Search Result 2,167, Processing Time 0.037 seconds

Proteomic Response of Alfalfa Subjected to Aluminum (Al) Stress at Low pH Soil

  • Rahman, Md. Atikur;Kim, Yong-Goo;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.4
    • /
    • pp.262-268
    • /
    • 2014
  • In order to reveal the aluminum (Al) stress tolerance mechanisms in alfalfa plant at low pH soil, a proteomic approach has been conducted. Alfalfa plants were exposed to Al stress for 5 days. The plant growth and total chlorophyll content are greatly affected by Al stress. The malondialdehyde (MDA) and $H_2O_2$ contents were increased in a low amount but free proline and soluble sugar contents, and the DPPH-radical scavenging activity were highly increased. These results indicate that antioxidant activity (DPPH activity) and osmoprotectants (proline and sugar) may involve in ROS ($H_2O_2$) homeostasis under Al stress. In proteomic analysis, over 500 protein spots were detected by 2-dimentional gel electrophoresis analysis. Total 17 Al stress-induced proteins were identified, of which 8 protein spots were up-regulated and 9 were down-regulated. The differential expression patterns of protein spots were selected and analyzed by the peptide mass fingerprinting (PMF) using MALDI-TOF MS analysis. Three protein spots corresponding to Rubisco were significantly down-regulated whereas peroxiredoxin and glutamine synthetase were up-regulated in response to Al stress. The different regulation patterns of identified proteins were involved in energy metabolism and antioxidant / ROS detoxification during Al stress in alfalfa. Taken together, these results provide new insight to understand the molecular mechanisms of alfalfa plant in terms of Al stress tolerance.

ER Stress-Induced Jpk Expression and the Concomitant Cell Death

  • Kim Hye Sun;Chung Hyunjoo;Kong Kyoung-Ah;Park Sungdo;Kim Myoung Hee
    • Biomedical Science Letters
    • /
    • v.11 no.2
    • /
    • pp.135-141
    • /
    • 2005
  • A Jopock (Jpk), a trans-acting factor associating with the position-specific regulatory element of murine Hoxa-7, has shown to have a toxicity to both prokaryotic and eukaryotic cells when overexpressed. Since Jpk protein harbors a transmembrane domain and a putative endoplasmic reticulum (ER)-retention signal at the N-terminus, a subcellular localization of the protein was analyzed after fusing it into the green fluorescent protein (GFP): Both N-term (Jpk-EGFP) and C-term tagged-Jpk (EGFP-Jpk) showed to be localized in the ER when analyzed under the fluorescence microscopy after staining the cells with ER- and MitoTracker. Since ER stress triggers the ER-stress mediated apoptosis to eliminate the damaged cells, we analyzed the expression pattern of Jpk under ER-stress condition. When MCF7 cells were treated with the ER-stress inducer such as DTT and EGTA, the expression of Jpk was upregulated at the transcriptional level like that of Grp78, a molecular chaperone well known to be overexpressed under ER-stress condition. In the presence of high concentration of ER-sterss inducer (10 mM), about 70 (DTT) to $95\%$ (EGTA) of cells died stronly expressing ($10\~12$ fold) Jpk. Whereas at the low concentration ($0.001\~1.0\;mM$) of the inducer, the expression of Jpk was increased about 2.5 (EGTA) to 5 fold (DTT), which is rather similar to those of ER chaperone protein Grp78. These results altogether indicate that the ER-stress upregulated the expression of Jpk and the excess stress induces the ER-stress induced apoptosis and the concomitant expression of Jpk.

  • PDF

New Protein Extraction/Solubilization Protocol for Gel-based Proteomics of Rat (Female) Whole Brain and Brain Regions

  • Hirano, Misato;Rakwal, Randeep;Shibato, Junko;Agrawal, Ganesh Kumar;Jwa, Nam-Soo;Iwahashi, Hitoshi;Masuo, Yoshinori
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.119-125
    • /
    • 2006
  • The rat is an accepted model for studying human psychiatric/neurological disorders. We provide a protocol for total soluble protein extraction using trichloroacetic acid/acetone (TCA/A) from rat (female) whole brain, 10 brain regions and the pituitary gland, and show that two-dimensional gel electrophoresis (2-DGE) using precast immobilized pH (4-7) gradient (IPG) strip gels (13 cm) in the first dimension yields clean silver nitrate stained protein profiles. Though TCA/A precipitation may not be "ideal", the important choice here is the selection of an appropriate lysis buffer (LB) for solubilizing precipitated proteins. Our results reveal enrichment of protein spots by use of individual brain regions rather than whole brain, as well as the presence of differentially expressed spots in their proteomes. Thus individual brain regions provide improved protein coverage and are better suited for differential protein detection. Moreover, using a phosphoprotein-specific dye, ingel detection of phosphoproteins was demonstrated. Representative high-resolution silver nitrate stained proteome profiles of rat whole brain total soluble protein are presented. Shortcomings apart (failure to separate membrane proteins), gel-based proteomics remains a viable option, and 2-DGE is the method of choice for generating high-resolution proteome maps of rat brain and brain regions.

Effects of Bambusae Caulis in Liquamen on the Stress Proteins Induced by Heating in Endothelial Cells (혈관내피세포에 열 충격 부과시 죽력이 stress proteins의 발현에 미치는 영향)

  • Jeon Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.496-499
    • /
    • 2004
  • We have previously observed that Bambusae Caul is in Liquamen (BCL) stimulates the adipose conversion of 3T3-L1 cells and molecular chaperones were involved in the process of the assembly and replacement of laminin subunits in Bovine aortic endothelial cells(BAEC). Endothelial cells are exposed to continuous shear stress due to the blood flow. Heat shock protens(hsp) are a well-known stress response protein, namely, stress proteins. To investigate effects of BCL on the stress proteins induced by heating in endothelial cells, we have analyzed synthetic amounts of stress proteins in sodium dodecyl sulfate gel electrophoresis under reducing conditions. Under the condition of heating stress, BCL inhibited the synthesis of stress proteins in endothelial cells. These results suggest that BCL may have an important role for expression of stress proteins induced by heating in endothelial cells.

Induction of Oxidative Stress and Cytoskeleton Damage by Cadmium in WB-F344 Rat Liver Epithelial Cells (랫드간장상피세포에서 카드뮴에 의한 산화적 스트레스 및 Cytoskeleton 손상 유발에 관한 연구)

  • 정상희;조명행;조준형
    • Toxicological Research
    • /
    • v.14 no.4
    • /
    • pp.577-585
    • /
    • 1998
  • Cadmium is an important industrial and environmental pollutant and has adverse effects on cell growth and metabolism, although the mechanisms of its cellular toxicity are still unclear. This study was performed to elucidate the cytotoxic mechanism of cadmium in the viewpoint of oxidative stress and cytoskeleton alterations in WB-F344 rat liver epithelial cells. 200 $\mu\textrm{M}$ $CdCl_2$ caused a severe disassembling of microtubule and micro filament and an apparent cell retraction under an observation with fluorescence micoscope. (equation omitted)-tubulin and F-actin protein were highly thiolated at 20 min and then disappeared from 1 hour after the treatment of 200 $\mu$M CdCl$_2$in the immunoblot analysis. Intracellular GSH was decreased from 1hr to 24 hrs by 66.6 or 200 $\mu\textrm{M}$ of $CdCl_2$. Intracellular protein thiol was also decreased by 22.2, 66.6 and 200 $\mu\textrm{M}$ of $CdCl_2$ at 1 hour after its treatment. The product of lipid peroxidation (malondialdehyde) was increased from 4 hrs by 66.6 and 200$\mu\textrm{M}$ of $CdCl_2$. These data indicate that cadmium induces oxidative stress involving disassembling of microtubule and micro filament, thiolation of (equation omitted)-tubulin and actin protein, depletion of GSH and protein thiol, and increase of lipid peroxidation.

  • PDF

Rescue of Oxidative Stress by Molecular Chaperones in Yeast

  • Ueom Jeonghoon;Kang Sooim;Lee Kyunghee
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.76-78
    • /
    • 2002
  • Heat shock proteins (HSPs) are induced in most living cells by mild heat treatment, ethanol, heavy metal ions and hypoxia. In yeast Saccharomyces cerevisiae, mild heat pretreatment strongly induces Hsp104 and thus provide acquired thermotolerance. The ability of hsp104 deleted mutant $({\triangle}hsp104)$ to acquire tolerance to extreme temperature is severely impaired. In providing thermotolerance, two ATP binding domains are indispensible, as demonstrated in ClpA and ClpB proteases of E. coli. The mechanisms by which Hsp104 protects cells from severe heat stress are not yet completely elucidated. We have investigated regulation of mitochondrial metabolic pathways controlled by the functional Hsp104 protein using $^{13}C_NMR$ spectroscopy and observed that the turnover rate of TCA cycle was enhanced in the absence of Hsp104. Production of ROS, which are toxic to kill cells radiply via oxidative stress, was also examined by fluorescence assay. Mitochondrial dysfunction was manifested in increased ROS levels and higher sensitivity for oxidative stress in the absence of Hsp104 protein expressed. Finally, we have identified mitochondrial complex I and Ferritin as binding protein(s) of Hsp104 by yeast two hybrid experiment. Based on these observations, we suggest that Hsp104 protein functions as a protector of oxidative stress via either keeping mitochondrial integrity, direct binding to mitochonrial components or regulating metal-catalyzed redox chemistry.

  • PDF

Expression Profile of Heat Shock Protein Gene Transcripts (HSP70 and HSP90) in the Nerve Ganglia of Pacific abalone, Haliotis discus hannai Exposed to Thermal Stress

  • Sukhan, Zahid Parvez;Kho, Kang Hee
    • Journal of Marine Life Science
    • /
    • v.5 no.2
    • /
    • pp.92-98
    • /
    • 2020
  • Heat shock proteins (HSPs) are highly conserved cellular proteins that contribute to adaptive responses of organisms to a variety of stressors. In response to stressors, cellular levels of HSPs are increased and play critical roles in protein stability, folding and molecular trafficking. The mRNA expression pattern of two well-known heat shock protein transcripts, HSP70 and HSP90 were studied in two tissues of nerve ganglia, cerebral ganglion and pleuropedal ganglion of Pacific abalone (Haliotis discus hannai). It was observed that both HSP70 and HSP90 transcripts were upregulated under heat stress in both ganglion tissues. Expression level of HSP70 was found higher than HSP90 in both ganglia whereas cerebral ganglion showed higher expression than pleuropedal ganglion. The HSP70 and HSP90 showed higher expression at Day-1 after exposed to heat stress, later decreased at Day-3 and Day-7 onwards. The present result suggested that HSP70 and HSP90 synthesize in nerve ganglion tissues and may provide efficient protection from stress.

Brefeldin A-induced Endoplasmic Reticulum Stress Leads to Different CHOP Expression in Primary Astrocyte Cells and C6 Glioma Cells (Astrocyte 세포와 C6 glioma 세포에서 ER stress 유도 물질 brefeldin A에 의한 CHOP 단백질의 발현 차이)

  • Park, Eun Jung;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.490-495
    • /
    • 2016
  • Brefeldin A (BFA), a lactone antibiotic isolated from the fungus Eupenicillium brefeldianum, inhibits the transport of secreted and membrane proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. BFA disrupts Golgi function, the accumulation of unfolded proteins in ER, and the induction of ER stress. Prolonged ER stress induces apoptosis at least in part through the transcription factor C/EBP (CCAAT/enhancer binding protein) homologous protein (CHOP),which is activated by the unfolded protein response (UPR). In this paper, we demonstrate that BFA-induced endoplasmic reticulum stress leads to different CHOP expression in primary astrocyte cells and C6 glioma cells. BFA induced lower CHOP expression levels in primary astrocyte cells than in C6 glioma cells; however, other ER stress inducers (thapsigargin and tunicamycin) resulted in similar expression patterns in these two cell types. Interestingly, the three different ER stress inducers (BFA, thapsigargin, and tunicamycin) induced similar levels of CHOP mRNA expression in primary astrocyte cells. The ubiquitin-proteasome inhibitor MG132 also markedly up-regulated the BFA-mediated CHOP protein expression in primary astrocyte cells. BFA also induced higher proteasome activity in primary astrocyte cells than in C6 glioma cells. Taken together, our results suggest that higher proteasomal activity might down-regulate BFA-induced CHOP expression in primary astrocyte cells.

NELL2 Function in the Protection of Cells against Endoplasmic Reticulum Stress

  • Kim, Dong Yeol;Kim, Han Rae;Kim, Kwang Kon;Park, Jeong Woo;Lee, Byung Ju
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.145-150
    • /
    • 2015
  • Continuous intra- and extracellular stresses induce disorder of $Ca^{2+}$ homeostasis and accumulation of unfolded protein in the endoplasmic reticulum (ER), which results in ER stress. Severe long-term ER stress triggers apoptosis signaling pathways, resulting in cell death. Neural epidermal growth factor-like like protein 2 (NELL2) has been reported to be important in protection of cells from cell death-inducing environments. In this study, we investigated the cytoprotective effect of NELL2 in the context of ER stress induced by thapsigargin, a strong ER stress inducer, in Cos7 cells. Overexpression of NELL2 prevented ER stress-mediated apoptosis by decreasing expression of ER stress-induced C/EBP homologous protein (CHOP) and increasing ER chaperones. In this context, expression of anti-apoptotic Bcl-xL was increased by NELL2, whereas NELL2 decreased expression of pro-apoptotic proteins, such as cleaved caspases 3 and 7. This anti-apoptotic effect of NELL2 is likely mediated by extracellular signal-regulated kinase (ERK) signaling, because its inhibitor, U0126, inhibited effects of NELL2 on the expression of anti- and pro-apoptotic proteins and on the protection from ER stress-induced cell death.

Development of Rapid Detection Method for Unfolded Protein Response in the Mammalian Cells

  • Kwon Kisang;Goo Tae Won;Kwon O-Yu
    • Biomedical Science Letters
    • /
    • v.11 no.2
    • /
    • pp.249-252
    • /
    • 2005
  • The mammalian unfolded protein response (UPR) protects the cell. against the stress of unfolded or misfolded proteins in the endoplasmic reticulum (ER). It has recently demonstrated that IRE1, PERK, ATF6, and X-box protein 1 (XBP-l) directly or indirectly participate in this process. Upon accumulation of unfolded/misfolded proteins in the ER lumen, release of BiP from Ire1p permits dimerization and autophosphorylation to activate its kinase and endoribonulease activities to initiate XBP-1 mRNA splicing. Spliced XBP-1 mRNA removed middle part of 23 bp and encodes a potent transcription factor, XBP-l protein that binds to the unfolded protein response element (UPRE) or endoplasmic reticulum stress element (ERSE) sequence of many UPR target genes and produces several kind of ER chaperones. In this study, we described both the result and the detailed experimental procedures of XBP-1 mRNA splicing induced by ER stress, this result might help to elucidate the roles of the UPR and early diagnosis in a number of human diseases involving endoplasmic reticulum storage disease (ERSD).

  • PDF