• Title/Summary/Keyword: Stress measurement of shotcrete lining

Search Result 5, Processing Time 0.025 seconds

Numerical Study for Tunnel Shotcrete Lining Operated Stress Measurement Techique Development During a Construction (시공중 터널 숏크리트 라이닝 작용응력 측정기법 개발을 위한 수치해석적 연구)

  • Shin, Hyu-Seong;Kim, Dong-Gyou;Jung, Yong-Su;Hwang, Jae-Hong;Bae, Gyu-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.754-761
    • /
    • 2008
  • In general, stress measurement of existent shotcrete lining be used by pressure cells. but, measuring instrument is lost by high pressure at shotcrete lining construction and pressure cell's measurement value have to low believability by natural conditions like curing temperature. In this study, proposed techniques to measure without utilizing sensitive stress sensor in natural condition at point that want stress of shotcrete lining after shotcrete lining construction. Executed numerical analysis to forecast stress level that interact in tunnel shotcrete lining, measured strain of hole by load action through hole in shotcrete lining. 3D FEM(finite element method) is enforced through various parameters curing time of shotcrete lining, thickness, load condition. Different model cases applied by parametic study. As analysis result, it could grasp development possibility of method that propose this time because it could examine corelation with strain by near hole of shotcrete lining and stress about load condition.

  • PDF

Numerical approach on relationship between deformation of artificial crack and stress acting on tunnel shotcrete lining (인공균열 주위의 변형과 터널 숏크리트 라이닝 응력간의 상관관계에 대한 수치해석적 검토)

  • Shin, Hyu-Soung;Kwon, Young-Cheul;Bae, Gyu-Jin;Kim, Kyung-Shin;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.64-71
    • /
    • 2009
  • The stresses acting on shotcrete lining of tunnel have been measured virtually by monitoring instruments installed during construction. However, the malfunction of instrument and the lack of consistency of signal have always been controversial, but re-installation of instrument after construction of tunnel lining is practically impossible. Therefore, authors have carried out the study to develop a new technique for estimating the stress acting on shotcrete lining during and after construction. In the technique, stresses of shotcrete lining can be estimate by the measurement of deformation of free face. Therefore, the relationships between the stresses of shotcrete lining and deformation of free surface are indispensable factor. In this paper, the parametric study using 2D FEM analysis was carried out to estimate the relationships between the stress level acting on the tunnel shotcrete lining and the deformation near the free face (e.g. artificial crack in this study). The distribution of stresses of shotcrete lining is also investigated in this study as the preliminary investigation for the large-scale tunnel lining test and detailed 3D FEM analysis.

  • PDF

Suggestion for the improvement of the field measurements on the shotcrete lining (터널 숏크리트 계측의 개선방안)

  • Kim, Hak-Joon;Park, Si-Hyun;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.177-192
    • /
    • 2010
  • The field measurements on the shotcrete lining are usually performed during the tunnel construction. However, the credibility of the measurements is not certain because of the non-stress related strains occurring in the shotcrete, the uncertainty of the deformation modulus of the shotcrete, and the intrinsic difficulties involved in the strain measurements in the shotcrete. The problem related to the field measurements on the shotcrete is investigated using the review of the previous studies and the field measurement performed for this study. A method for the correction of stress measurements at the shotcrete lining, considering the non-stress related strains, is suggested using the literature review and the actual measurements obtained from the non-stress shotcretes. The deformation modulus used for the calculation of the stress acting on the shotcrete is also suggested.

New Austrian Tunneling Method (일본의 NATM시공)

  • Toyoki Kadoya
    • Explosives and Blasting
    • /
    • v.9 no.4
    • /
    • pp.22-31
    • /
    • 1991
  • NATM technic had been applied to Nakaya tunnel of Sin kan express R.R lines in 1975. on the worst expandable geological conditions, application of NATM method was carried out good result. Measurement data which include convergencymeter, inclinometer, extensometor load-cell, strain gage data of shotcrete stress and steel arch. was explained with slides. Induced NATM technic has been improved since 1975 as follows, specially adhesive method of shotcrete instead of spray method such as tunnel swift lining Sliding press lining, clean lining by pumping and sweeping tote lining ets.

  • PDF

Performance Verification and Reliability Test of Tunnel Shotcrete Stressmeter (터널 숏크리트 응력계의 성능검증과 신뢰성 시험 연구)

  • Kim, Yeong-Bae;Park, Yeong-Bae;Lee, Seong-Won;Lee, Kang-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.113-126
    • /
    • 2024
  • Shotcrete lining is an important material for the stability of tunnels in NATM tunnels. However, stressmeters for stress measurements of shotcrete lining are installed in the field without performance verification because of a lack of research on methods, procedures, regulations, and reliability of measurement equipment. To solve this problem, all shotcrete stressmeters currently used in Korea were investigated. For each stressmeter, external inspection and structural and functional inspection were performed to identify defects and problems in devices. For this purpose, a shotcrete stressmeter performance test device capable of load loading in stages was developed and obtained KOLAS certification. Using the device, stressmeter performance tests were conducted. Structural problems of integrated- and cell-type shotcrete stressmeters were identified through concrete mold tests, and improvement plans and performance verification procedures were suggested. The results of this study are expected to contribute to the preparation of regulations for the performance verification of shotcrete stressmeters and the selection of measuring instruments in the field in the future.