• Title/Summary/Keyword: Stress integration

Search Result 340, Processing Time 0.032 seconds

Hybrid Integration of P-Wave Velocity and Resistivity for High-Quality Investigation of In Situ Shear-Wave Velocities at Urban Areas (도심지 지반 전단파속도 탐사를 위한 P-파 속도와 전기비저항의 이종 결합)

  • Joh, Sung-Ho;Kim, Bong-Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.45-51
    • /
    • 2010
  • In urban area, design and construction of civil engineering structures such as subway tunnel, underground space and deep excavation is impeded by unreliable site investigation. Variety of embedded objects, electric noises and traffic vibrations degrades the quality of site investigation, whatever the site-investigation technique would be. In this research, a preliminary research was performed to develop a dedicated site investigation technique for urban geotechnical sites, which can overcome the limitations of urban sites. HiRAS (Hybrid Integration of Surface Waves and Resistivity) technique which is the first outcome of the preliminary research was proposed in this paper. The technique combines surface wave as well as electrical resistivity. CapSASW method for surface-wave technique and PDC-R technique for electrical resistivity survey were incorporated to develop HiRAS technique. CapSASW method is a good method for evaluating material stiffness and PDC-R technique is a reliable method for determination of underground stratification even in a site with electrical noise. For the inversion analysis of HiRAS techniuqe, a site-specific relationship between stress-wave velocity and resistivity was employed. As for outgrowth of this research, the 2-D distribution of Poisson's ratio could be also determined.

Mechanical Properties of High Stressed Silicon Nitride Beam Measured by Quasi-static and Dynamic Techniques

  • Shin, Dong Hoon;Kim, Hakseong;McAllister, Kirstie;Lee, Sangik;Kang, Il-Suk;Park, Bae Ho;Campbell, Eleanor E.B.;Lee, Sang Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.361.1-361.1
    • /
    • 2016
  • Due to their high sensitivity, fast response, small energy consumption and ease of integration, nanoelectromechanical systems (NEMS) have attracted much interest in various applications such as high speed memory devices, energy harvesting devices, frequency tunable RF receivers, and ultra sensitive mass sensors. Since the device performance of NEMS is closely related with the mechanical and flexural properties of the material in NEMS, analysis of the mechanical and flexural properties such as intrinsic tensile stress and Young's modulus is a crucial factor for designing the NEMS structures. In the present work, the intrinsic mechanical properties of highly stressed silicon nitride (SiN) beams are investigated as a function of the beam length using two different techniques: (i) dynamic flexural measurement using optical interferometry and (ii) quasi-static flexural measurement using atomic force microscopy. The reliability of the results is analysed by comparing the results from the two different measurement techniques. In addition, the mass density, Young's modulus and internal stress of the SiN beams are estimated by combining the techniques, and the prospect of SiN based NEMS for application in high sensitive mass sensors is discussed.

  • PDF

Transient Dynamic Stress Analysis of Transversely Isotropic Cylinders Subject to Longitudinal Impact (충격압축하중을 받는 횡등방성 중실축의 과도 동적해석)

  • Oh, Guen;Sim, Woo-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.521-532
    • /
    • 2007
  • Elastic wave propagations in the semi-infinite transversely isotropic cylinder under various kinds of longitudinal impact loads are analyzed using the axisymmetric finite element method and Houbolt time-integration scheme. For which the finite element program is newly constructed and verified through the comparison of present numerical results with those by other researchers. E-type glass-epoxy composite cylinders with different fiber volume fractions are adopted and studied in detail with dynamic responses of the isotropic cylinder. Three dimensional wave motions are given in graphic form to show the realistic view of the wave propagation. Nondimensionalized dynamic characteristic variables which relate the size of finite element mesh, the time step, and the wave speed are presented for obtaining accurate and stable numerical results.

A Study on the Plasticity and Characteristics on Jump Suit Shown in the Modern Fashion (현대패션에 나타난 점프 슈트(Jump Suit)의 조형성과 특성)

  • Kim, Sun Young
    • Korean Journal of Human Ecology
    • /
    • v.23 no.3
    • /
    • pp.515-527
    • /
    • 2014
  • This study is intended to develop the creative and high value-added products as well as the development of diversity for jump suit for the future by analyzing the trend and feature shown in jump suit in the modern fashion. In the research methodology, the analysis was carried out over a total of 351 work pieces on jump suit among those presented in the collection of Paris, Milan, New York and London from 2006S/S to 2013F/W as well as literature review. The aesthetic features on suit jump design introduced in the modern fashion could be characterized as the following. First, both upper and lower garments are composed with a simple array of items and the stress was put on modernity feature through minimal expression technique. The feature of solid simplicity was also given with achromatic color or neutral monochrome. Second, the feminity image was emphasized with adoption of such highlighting items as detailed add-ons, tops, camisoles and blouses that stress the organically curved streamline including silhouette, material itself, crease and drape that enable the direct and indirect exposition of human body and the expression of smooth curve in human body. Third, jump suit revealed the multipurpose feature as item available for the diverse wear such as working habiliment, sports wear, uniform, office wear and evening wear, depending on the terms and conditions. Fourth, the deconstructive characteristic appeared through integration with various items, destruction of formative structure, non-structural shape, and ambiguity in wearing method.

Temperature Distribution and It's Contribution to Self-equilibrium Thermal Stress in Bridge (교량 단면 내 온도분포에 따른 자체평형 열응력 해석)

  • Kwak, Hyo-Gyoung;Kwon, Se-Hyung;Ha, Sang-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.531-542
    • /
    • 2011
  • The time-dependent temperature distribution across the section in bridges is determined on the basis of the three-dimensional finite element analyses and numerical time integration in this study. The material properties which change with time and thermal stress of concrete are taken into account to effectively trace the early-age structural responses. Since the temperature distribution is nonlinear and depends upon many material constants such as the thermal conductivity, specific heat, hydration heat of concrete, heat transfer coefficients and solar radiation, three representative influencing factors of the construction season, wind velocity and bridge pavement are considered at the parametric studies. The validity of the introduced numerical model is established by comparing the analytical predictions with results from previous analytical studies. On the basis of parametric studies for four different bridge sections, it is found that the creep deformation in concrete bridges must be considered to reach more reasonable design results and the temperature distribution proposed in the Korean bridge design specification need to be improved.

Fatigue Behavior and Probabilistic Fatigue Analysis of Concrete Offshore Structures (콘크리트 해양구조물(海洋構造物)의 피로거동(疲勞擧動)과 확률론적(確率論的) 피로해석(疲勞解析))

  • Oh, Byung Hwan;Kim, Jee Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.31-41
    • /
    • 1988
  • Recently, the offshore structures are increasingly constructed to explore the natural resources. These offshore structures are to be designed to resist the repetitive wave forces. A probabilistic method for the fatigue analysis of offshore concrete structures is presented in this study. The present spectral fatigue analysis calculates wave forces first and then the transfer functions for unit waves from which stress spectra are determined. The calculated fatigue stresses may then be used to evaluate the fatigue damage of concrete structures. A simplified model for the estimation of fatigue damage of the structures, which employs only the probabilistic moments of the peak stress distribution without direct integration, is also proposed. The present study allows more realistic fatigue analysis of offshore concrete structures.

  • PDF

A Data-driven Multiscale Analysis for Hyperelastic Composite Materials Based on the Mean-field Homogenization Method (초탄성 복합재의 평균장 균질화 데이터 기반 멀티스케일 해석)

  • Suhan Kim;Wonjoo Lee;Hyunseong Shin
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.329-334
    • /
    • 2023
  • The classical multiscale finite element (FE2 ) method involves iterative calculations of micro-boundary value problems for representative volume elements at every integration point in macro scale, making it a computationally time and data storage space. To overcome this, we developed the data-driven multiscale analysis method based on the mean-field homogenization (MFH). Data-driven computational mechanics (DDCM) analysis is a model-free approach that directly utilizes strain-stress datasets. For performing multiscale analysis, we efficiently construct a strain-stress database for the microstructure of composite materials using mean-field homogenization and conduct data-driven computational mechanics simulations based on this database. In this paper, we apply the developed multiscale analysis framework to an example, confirming the results of data-driven computational mechanics simulations considering the microstructure of a hyperelastic composite material. Therefore, the application of data-driven computational mechanics approach in multiscale analysis can be applied to various materials and structures, opening up new possibilities for multiscale analysis research and applications.

Elastic Wave Propagation in Monoclinic System Due to Harmonic Line Load

  • Kim, Yong-Yun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.2E
    • /
    • pp.47-52
    • /
    • 1998
  • An analysis of dynamic responses is carried out on monoclinic anisotropic system due to a buried harmonic line source. The load is in the form of a normal stress acting along an arbitrary axis on the plane of symmetry within the orthotropic materials: In case that the line load is acting along the symmetry axis normal to the plane of symmetry, plane wave equation is coupled with verital shear wave and longitudinal wave. However, if the line load is acting along an arbitrary axis normal to the plane of symmetry, plane wave equation is coupled with vertical shear wave, longitudinal wave and horizontal shear wave. We first considered the equation of motion in a reference coordinate system, where the line load is coincident with a symmetry axis of the orthotropic material. Then the equation of motion is transformed into one with respect to general coordinate system with azimuthal angle by using transformation tensor. Plane wave solutions of monoclinic systems are derived for infinite media. Finally complete solutions for the plane harmonic wave are obtained by calculating the inverse of the integral transforms, in which bulk wave poles are avoided by deforming the contour of the integration to the complex plane. Numerical results for examples of orthotropic material belonging to monoclinic symmetry are demonstrated.

  • PDF

A Gridless Finite Difference Method for Elastic Crack Analysis (탄성균열해석을 위한 그리드 없는 유한차분법)

  • Yoon, Young-Cheol;Kim, Dong-Jo;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.321-327
    • /
    • 2007
  • This study presents a new gridless finite difference method for solving elastic crack problems. The method constructs the Taylor expansion based on the MLS(Moving Least Squares) method and effectively calculates the approximation and its derivatives without differentiation process. Since no connectivity between nodes is required, the modeling of discontinuity embedded in the domain is very convenient and discontinuity effect due to crack is naturally implemented in the construction of difference equations. Direct discretization of the governing partial differential equations makes solution process faster than other numerical schemes using numerical integration. Numerical results for mode I and II crack problems demonstrates that the proposed method accurately and efficiently evaluates the stress intensity factors.

Numerical Analysis of Hydrodynamic Characteristics for Various Types of Jack-up Legs (다양한 형상의 Jack-up Leg에 대한 해양 동역학적 수치해석)

  • Kim, Ji-Seok;Park, Min-Su;Koo, Weoncheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.371-377
    • /
    • 2014
  • In this study, the hydrodynamic characteristics of various types of jack-up legs for a wind turbine installation vessel were analyzed. Using the modified Morison equation, the wave and current excitation forces on the jack-up legs were calculated. A modal analysis was performed to predict the dynamic responses for various types of jack-up legs. The Newmark-beta time integration scheme was used to solve the equation of motion in waves in the time domain. The maximum displacement and maximum bending stress were computed for four different types of legs, and their results were compared to select an optimum leg type. Finally, a six-leg jack-up rig with the selected optimal legs was modeled, and its natural period and hydrodynamic behaviors were evaluated.