• Title/Summary/Keyword: Stress fractures

Search Result 212, Processing Time 0.03 seconds

A Study on the Safety Estimation of Table Liner for Vertical Roller Mill Using HDM (구멍뚫기법을 이용한 수직형 롤러 분쇄기용 테이블 라이너의 안전성 평가에 관한 연구)

  • Lee Dong Woo;Hong Soon Hyeok;Cho Seok Swoo;Joo Won Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1221-1228
    • /
    • 2004
  • The vertical roller mill is the important machine grinding and mixing various crude materials in the manufacturing process of portland cement. Table liner is one of grinding elements of vertical roller mill and is subjected to the cyclic bending stress by rollers load and the centrifugal force by rotation of table. It demands $4{\times}10^7$ cycle but has $4{\times}10^6{\sim}8{\times}10^6$ cycle. It fractures at the edge of grinding path of outside roller. The repair expense for it amounts to $30\%$ of total maintenance of vertical roller mill. Therefore, this study shows the fracture mechanism of table liner for vertical roller mill using HDM and fatigue analysis and makes the estimation for safety of vertical roller mill.

Foraminal Synovial Cyst Associated with Ankylosing Spondylitis

  • Kim, Heyun-Sung;Ju, Chang-Il;Kim, Seok-Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.1
    • /
    • pp.54-56
    • /
    • 2011
  • Ankylosing spondylitis (AS) is frequently associated with inflammatory lesions of the spine and continuous fatigue stress fractures; however, an association with an intraspinal synovial cyst has not been previously reported. A 55-year-old man with a five year history of AS who presented with back pain and a right radiculopathy was admitted to the hospital. Five years previously, he underwent a percutaneous vertebroplasty for an osteoporotic L1 compression fracture, and was diagnosed with AS at that time. Plain radiographs showed aggravated kyphosis and a stress fracture through the ossified posterior element, below the prior vertebroplasty. Magnetic resonance images revealed a right foraminal cystic lesion at the L2-L3 level with effacement of the nerve root. A 1.6 cm cystic lesion that appeared to arise from the L2-L3 facet joint without direct communication was excised from the L2-L3 foramen. Pathological examination confirmed synovial cyst. The patient's symptoms resolved immediately after surgery except for a mild dysesthesia of the right leg. We report herein a rare case of foraminal synovial cyst associated with AS accompanying posterior element fracture with a review of literature.

Effect of Prolonged Running-induced Fatigue on Free-torque Components

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the differences in FT (free-torque) components between non-fatigue and fatigue conditions induced by prolonged running. Methods: Fifteen healthy runners with no previous lower-extremity fractures ($22.0{\pm}2.1$ years of age) participated in this study. Ground reaction force data were collected for the right-stance phase for 10 strides of 5 and 125-min running periods at 1,000 Hz using an instrumented force platform (instrumented dual-belt treadmills, Bertec, USA) while the subjects ran on it. The running speed was set according to the preferences of the subjects, which were determined before the experiment. FT variables were calculated from the components of the moment and force output from the force platform. A repeated-measures one-way ANOVA was used to test for significant differences between the two conditions. The alpha level for all the statistical tests was 0.05. Results: The absolute FT at the peak braking force was significantly greater after 5 mins of running than after 125 mins of running-which was regarded as a fatigued state-but there were no significant differences in the absolute peak FT or impulse between the conditions. Conclusion: The FT variables in the fatigue condition during prolonged running hardly affect the tibial stress syndrome.

Investigation of Fracture Propagation in Cement by Hydraulic Fracturing Under the Tri-axial Stress Condition (시멘트 시료에 대한 삼축압축 환경에서의 수압파쇄시험 연구)

  • Riu, Hee-Sung;Jang, Hyun-Sic;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.233-244
    • /
    • 2017
  • We conducted hydraulic fracturing experiments on cement samples to investigate the dependency of fracture propagation on the viscosity of injection fluid and the in situ stress state. Ten cubic samples (20 cm side length) were produced using cement that was cured in water for more than one month. Samples were placed in a tri-axial compression apparatus with three independent principal stresses. An injection hole was drilled and the sample was hydraulically fractured under a constant injection rate. We measured injection pressures and acoustic emissions (AE) during the experiments, and investigated the fracture patterns produced by hydraulic fracturing. Breakdown pressures increased exponentially with increasing viscosity of the injection fluid. Fracture patterns were dependent on differential stress (i.e., the difference between the major and minor principal stresses). At low differential stress, multiple fractures oriented sub-parallel to the major principal stress axis propagated from the injection hole, and in some samples the fracture orientation changed during propagation. However, at high differential stress, a single fracture propagated parallel to the major principal stress axis. AE results show similar patterns. At low differential stress, AE source locations were more widespread than at high differential stress, consistent with the fracture pattern results. Our study suggests that hydraulic fracturing during shale gas extraction should be performed parallel to the orientation of minimum differential stress.

Numerical Approach for Determination of Shut-in Pressure in Hydrofracturing Test (수압파쇄 균열폐쇄압력 산정을 위한 수치해석 연구)

  • Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.128-137
    • /
    • 2011
  • The shut-in pressure calculated in common hydrofracturing test for vertical borehole equals generally to the minimum horizontal principal stress, so it should be considered as an essential parameter for determining the in-situ stress regime around the rock mass. It shows usually an ambiguous value in pressure-time history curves, however, because of the relationship between the behavior of hydraulic fractures and the condition of remote stress regime. In this study, a series of numerical analyses have been carried out to compare several methods for determining the shut-in pressure during hydrofracturing. The hydraulic-mechanical coupling has been applied to numerical analysis for simulating the fracture propagation by hydraulic pressure, and the different discontinuity geometry has been considered in numerical models to examine the effect of numerical element shape on fracture propagation pattern. From the numerical simulations with the four different discontinuity geometries, it was revealed that the shut-in pressure obtained from graphical methods rather than statistical method was relatively small. Consequently a care should be taken in selecting a method for determining the shut-in pressure when a stress anomaly around borehole and a fracture propagation with complicate mechanism are considered.

Thermo-mechanical simulations of pillar spalling for in-situ heater test by FRACOD

  • Lee Hee-Suk;Shen Baotang;Mikael Rinne
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.244-251
    • /
    • 2003
  • A two-dimensional BEM code, $FRACOD^{2D}$, was applied to simulate fracture initiation and propagation processes in a rock pillar during an in situ heater test of a rock pillar planned at the $\"{A}sp\"{o}$ Underground Rock laboratory of SKB, in Southern Sweden. To take the advantage of conventional BEM for simulating fracturing processes, but without efforts for domain integral transformation, a hybrid approach is developed to simulate the fracturing processes in rock pillar under coupled thermo-mechanical loading. The code FRACOD was used for simulating the fracture initiation and propagation processes with its boundary tractions reflecting the effects of the initial and redistributed thermomechanical stresses in the domain of interest at multiple excavation and heating steps were produced by a special algorithm of stress inversion, based on resultant thermo-mechanical stress fields at each excavation and heat loading step by a FEM code without considering fracturing processes. This hybrid approach can take the advantages of both types of numerical methods and avoids their shortcomings for fracturing process simulation and domain effects, respectively. In this paper, we present the hybrid approach for the stress, displacements, and fracturing processes at sequential excavation and heating steps of the in situ heater test as a predictive modelling, the formulation of the fracturing models and the predictive results. Two sections of borehole depth, 0.5 m and 1.5 m below the tunnel floor are considered. The pillar area is modelled with the FRACOD and the stress field produced by excavation and heating is transferred with corresponding boundary stresses. From the modelling results, the degree of fracturing and damage are evaluated for 120 days of heating. Dominated shear fracturing in the vicinity of the central pillar was observed from the models at both sections, but spalled area appears to be limited. Based on the modelling results, a sensitivity study for the effect of pre-existing fractures in the vicinity of the holes is also conducted, and the initiation and evolution of EDZ around the deposition holes are investigated using this particular numerical technique.

  • PDF

A Study of Structural Stress Technique for Fracture Prediction of an Auto-Mobile Clutch Snap-Ring (클러치 스냅링부 파괴 예측을 위한 구조응력기법 연구)

  • Kim, Ju Hee;Myeong, Man Sik;Oh, Chang Sik;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.175-183
    • /
    • 2016
  • The endurance reliability assessment of a highly complex mechanism is generally predicted by the fatigue life based on simple stress analysis. This study discusses various fatigue life assessment techniques for an automobile clutch snap ring. Finite element analyses were conducted to determine the structural stress on the snap ring. Structural stress that is insensitive in regards to the mesh size and type definition is presented in this study. The structural stress definition is consistent with elementary structural mechanics theory and provides an effective measure of a stress state that pertains to fatigue behavior of welded joints in the form of both membrane and bending components. Numerical procedures for both solid models and shell or plate element models are presented to demonstrate the mesh-size insensitivity when extracting the structural stress parameters. Conventional finite element models can be used with the structural stress calculations as a post-processing procedure. The two major implications from this research were: (a) structural stresses pertaining to fatigue behavior can be consistently calculated in a mesh-insensitive manner regardless of the types of finite element models; and (b) by comparing with the clutch snap-ring fatigue test data, we should predict the fatigue fractures of an automobile clutch snap ring using this method.

Visualization of High Speed fracture Behavior in Y-TZP by using Mechano-luminescence (압광 재료를 이용한 구조용 Y-TZP 소재의 고속 파괴현상 가시화 연구)

  • Kim, J.S.;Sohn, K.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.348-353
    • /
    • 2007
  • The propagation of a macro-scale crack and the accompanying transformation zone around it was visualized in an Y-TZP ceramic using a mechano-luminescence (ML) technique. The technique allows realistic fractures that take place catastrophically in actual applications to be realistically stimulated. Unlike conventional quasi-static R-curves, the ML technique on a relatively fast time frame permitted a so-called quasi-dynamic R-curve in the crack speed range from 50 to 140 m/sec. to be measured. Effective toughening then commenced and the applied stress intensity factor increased to 27 $MPa{\sqrt{m}}$. The transformation zone height obtained from the ML observations was in good agreement with that predicted by the Marshall model, and coincided with previously observed results for quasi-static conditions by Raman spectorscopy and x-ray analysis.

A Study on on Failure Analysis of Table Liner for Roller Mill (롤러 분쇄기용 테이블 라이너의 파손 해석에 관한 연구)

  • Lee, Dong-Woo;Hong, Soon-Hyeok;Lee, Kyoung-Young;Cho, Seok-Swoo;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.163-169
    • /
    • 2003
  • The vertical roller mill is the important machine grinding and mixing various crude materials in the manufacturing process of portland cement. Table liner is one of grinding elements of vertical roller mill and is subjected to the cyclic bending stress by rollers load and the centrifugal force by rotation of table. It demands $4{\times}10^7$ cycle but has $4{\times}10^6{\sim}8{\times}10^6$ cycle. It fractures at the edge of grinding path of outside roller. The repair expense for it amounts to 30% of total maintenance of vertical roller mill. Therefore, this study shows the fracture mechanism of table liner for vertical roller mill using HDM and fatigue analysis

  • PDF

Fracture Mechanical Study on the Charpy V-notch and Fatigue Crack Propagation 8ehavior of Rail Steels (레일강의 샬피거동 및 피로균열 성장거동에 관한 파괴역학적 고찰)

  • Kim, Sung Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1319-1327
    • /
    • 1994
  • Since fatigue cracks in rail can be the source of fractures and subsequent derailments, quantitative evaluation of the fatigue behavior and fracture properities due to the analysis results of laboratory test are drawn on the basis for predicting fatigue life and making a decision of safe inspection interval. Charpy V-notch and fracture toughness behavior were evaluated from the results of Charpy impact test. Fatigue test was performed by using CT type specimen under constant amplitude loading, and finally the effects of the following parameters; crack orientation, temperature, and stress ratio, on the fatigue crack growth behavior were studied.

  • PDF