• 제목/요약/키워드: Stress corrosion crack

검색결과 273건 처리시간 0.027초

複合組織鋼의 第2相 硬度變化가 腐蝕疲勞 크랙傳播에 미치는 影響 (The Influence on the Corrosion Fatigue Crack Propagation in Changing of the Second Phase Hardness of Dual Phase Steel)

  • 오세욱;김웅집
    • Journal of Welding and Joining
    • /
    • 제11권2호
    • /
    • pp.42-52
    • /
    • 1993
  • The corrosion fatigue fracture behaviour of dual phase steel was investigated in 3% NaCl solution at 302MPa and 137MPa. Fatigue test was conducted by cantilever type of self-made rotary bending fatigue testing machine. The fatigue strength increased with increasing the hardness of 2nd phase. Corrosion pit originated at the boundary of the 2nd phase. The size and number of corrosion pits were influenced by the 2nd phase hardness, and pits remained constant in size just after they were transited into cracks. The life of crack initiation was effected by stress level. The shape of relation of .DELTA. K and da/dN has smaller scattering in it in 3% NaCl solution than that in air. The higher the 2nd phase hardness is, the greater the corrosion fatigue life becomes. Corrosion fatigue fracture behaviour was primarily effected by mechanical factor in case of high stress(302MPa), but by electro-chemical reaction in a lower stress(137MPa). As stress level got lower and hardness of the 2nd phase got higher, the roughness of fracture surface increased.

  • PDF

Crack Layer 이론을 이용한 배관용 고밀도 폴리에틸렌의 응력부식균열 진전 및 수명 예측 모델 (Modeling of stress corrosion crack growth and lifetime of pipe grade high density polyethylene by using crack layer theory)

  • 위정욱;최병호
    • 한국압력기기공학회 논문집
    • /
    • 제11권2호
    • /
    • pp.45-50
    • /
    • 2015
  • In many cases, the field fracture mechanism of the thermoplastic pipe is considered as either brittle or environmental fractures. Thus the estimation of the lifetime by modeling slow crack growth considering such fracture mechanisms is required. In comparison of the some conventional and empirical equations to explain the slow crack growth rate such as the Paris' law, the crack layer theory can be used to simulate the crack and process zone growth behaviors precisely, so the lifetime of thermoplastic pipe can also be accurately estimated. In this study, the modified crack layer theory for the stress corrosion cracking (SCC) of high density polyethylene is introduced with detailed algorithm. The oxidation induction time of the HDPE is also considered for the reduction of specific fracture energy during exposed to chemical environments. Furthermore, the parametric study for an important SCC parameter is conducted to understand the slow crack growth behavior of SCC.

PWSCC growth rate model of alloy 690 for head penetration nozzles of Korean PWRs

  • Kim, Sung-Woo;Eom, Ki-Hyun;Lim, Yun-Soo;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1060-1068
    • /
    • 2019
  • This work aims to establish a model of a primary water stress corrosion crack growth rate of Alloy 690 material for the head penetration nozzles of Korean pressurized water reactors. The test material had an inhomogeneous microstructure with bands of fine-grains and intragranular carbides in the matrix of coarse-grains, which was similar to the archive materials of the head penetration nozzles. The crack growth rate was measured from the strain-hardened materials as a function of the stress intensity factor in simulated primary water at various temperatures and dissolved hydrogen contents. The effects of strain-hardening, temperature, and dissolved hydrogen on the crack growth rate were analyzed independently, and were then introduced as normalizing factors in the crack growth rate model. The crack growth rate model proposed in this work provides a key element of the tools needed to assess the progress of a stress corrosion crack when detected in thick-wall Alloy 690 components in Korean reactors.

스테인레스 강판의 응력부식균열 전파기구에 관한 연구 (A study on the mechanism of stress corrosion cracking of stainless steel)

  • 임우조;김영식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.153-158
    • /
    • 1985
  • The dependence of the corrosion potential on the stress corrosion cracking of 304 austenitic stainless steel was inspected by using the specimen of constant displacement type under the environment of 42% $MgCl_2$ boiled solution. The relationship of the corrosion potential to the intermittent propagation behaviour in stress corrosion cracking was cleared. As the results, a possible model of stress corrosion cracking of 304 austenitic stainless steel in $MgCl_2$ boiled solution was presented on the basis of the Film Rupture Model. This model is specified by the following process. Rupturing of passive film at notch tip .rarw. Dissolution of metal ion and formation of tunnel .rarw. Initiation of microcrack .rarw. Propagation of main crack .rarw. Recreation of passive film at new crack surface.

  • PDF

용접부 응력부식균열 방지를 위한 쇼트피닝 효과의 유한요소 해석 (FEM Analysis of Effect of Shot Peening for Stress Corrosion Cracking at Welded Part)

  • 남기우;안석환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.239-241
    • /
    • 2004
  • Stress intensity factor of semi-circular crack front was calculated by FEM, and also allowable crack size which doesn‘t break out the fracture by SCC in residual stress field of STS materials. Allowable crack size was increased with compressive residual stress provided by shot peening on material surface, and with magnitude of compressive residual stress for depth direction.

  • PDF

파이프라인의 건전성 평가 시스템 개발 (Development of Integrity Assessment System for the Pipeline)

  • 이억섭;황인현
    • 한국정밀공학회지
    • /
    • 제17권12호
    • /
    • pp.157-162
    • /
    • 2000
  • The object of this work is to develop an assessment system for pipeline integrity. the system consists of four module applications for internal algorithm; the effect of corrosion in pipeline, crack, stress corrosion crack (SCC) and fatigue modules. Presently, the module of the external corrosion has been developed and the internal algorithm for the effect of corrosion in pipeline and the database of the system are described in this paper. The database of the system is separated to mainly four parts; geometry of pipeline, material properties, boundary conditions and general properties. Each components of the system are designed by user-friendly concept. This system may give a guideline for maintenance and modifications for the pipeline at the industrial sight. Furthermore, a procedure to evaluate an inspection interval is also provided.

  • PDF

$H_2S$ 가스포화 염산수용액에 의한 용접구조용강의 응력부식균열 발생거동 (Stress Corrosion Cracking Initiation Behavior of Weldable Structural Steel in $H_2S$ Gas Saturated HCl Solution)

  • 오세욱;김재철;김광영
    • 한국해양공학회지
    • /
    • 제4권1호
    • /
    • pp.88-100
    • /
    • 1990
  • Among the test methods to evaluate stress-corrosion cracking(SCC) on the basis of fracture mechanics, constant displacement(bolt) loading method using modified-WOL specimen is practically convenient. In this test method, compliance formula is generally required to calculate load(consequently $K_{ISCC}$). There are many problems in using the analytic compliance formula to calculate $K_{ISCC}$, so we had proposed the experimental $K_{ISCC}$ evaluation technique in the previous report. This study has employed the slightly altered configuration of modified-WOL specimen made of weldable structural stee(BS360-50D). With these specimens, stress-corrosion tests have been performed in $H_2S$ gas saturated 20% HCl solution. Through the test, the problems as mentioned earlier have been discussed again, and the proposed evaluation technique has been verified. And the stress-corrosion cracks and hydrogen blisters have been investigated in the initiation step with the aids of metallurgical micrographs, SEM fractographs, and EPMA analysis. The inclusions segregated in the mid-thickness region traps hydrogen to produce the hydrogen blistering. The applied or residual stress does not contribute the occurrence of the blister. Hydrogen absorbed into the mid-thickness region is consumed to produce the blistering so that stress-corrosion crack could hardly be detected at that region. The stress-corrosion cracks initiate from the inclusions and propagate in radial pattern. And the initiation site is remote from the crack tip and is inclined from the crack plane, which is assumed to be caused by the triaxial stress and the amount of the absorbed hydrogen.

  • PDF

고장력강의 부식피로에 미치는 용액온도의 영향에 관한 연구 (Study on effect of solution temperature on corrosion fatigue of high strength steel)

  • 유헌일
    • 오토저널
    • /
    • 제8권1호
    • /
    • pp.40-51
    • /
    • 1986
  • A study has been made of the corrosion fatigue of high strength low alloy steel in 3.5% NaCl solution under tension stress for solution temperature being 25.deg. C, 55.deg. C and 85 .deg. C. The main results obtained are as follows; 1) The corrosion fatigue crack growth rate curve could be divided into the First Region, the Second Region and the Third Region. 2) The corrosion fatigue crack growth rates in the First Region and the Second Region were Arrhenius temperature-dependent in this test range. The apparent activation energies for the corrosion fatigue cack growth rate were found to be 2000cal/mol in the First Region and 3700 cal/mol in the Second Region. 3) Hematite (Fe$_{2}$O$_{3}$) as the hexahedral crystal and magnetite (Fe$_{3}$O$_{4}$) as the octahedral crystal were observed in the corrosion products on the corrosion fatigue fracture surface at 85.deg. C and the anode fusion seem to be generated in the crack tip region at high temperature. 4) The complex environment effect ratio which was defined by the ratio of fatigue crack growth rate in corrosion environment to that in air might be considered not only a criterion estimating the effect of environment quantitatively but also an important parameter in the selection of the design stress for the fail safe design. The complex environment effect was not greater than ten in this test.

  • PDF

PRO-LOCA를 이용한 원전 배관의 파손확률에 대한 민감도 해석 (Sensitivity Analyses of Failure Probability of Pipes in Nuclear Power Plants using PRO-LOCA)

  • 조영기;김선혜;박재학
    • 한국안전학회지
    • /
    • 제29권3호
    • /
    • pp.136-142
    • /
    • 2014
  • Recently a new version of PRO-LOCA program was released. Using the program, failure probability of pipes can be evaluated considering fatigue and/or stress corrosion crack growth and the effects of various parameters on the integrity of pipes in nuclear power plants can be evaluated quantitatively. The analysis results can be used to establish an inspection plan and to examine the effects of important parameters in a maintenance plan. In this study, sensitivity analyses were performed using the program for several important parameters including sampling method, initial crack size, number of initial fabrication flaws, operation temperature, inspection interval, operation temperature and nominal applied bending stress. The effect of parameters on the leak and rupture probability of pipes was evaluated due to fatigue or stress corrosion crack growth.