• Title/Summary/Keyword: Stress condition

Search Result 4,077, Processing Time 0.036 seconds

Nominal axial and flexural strengths of high-strength concrete columns

  • Al-Kamal, Mustafa Kamal
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.85-94
    • /
    • 2019
  • The ACI building code is allowing for higher strength reinforcement and concrete compressive strengths. The nominal strength of high-strength concrete columns is over predicted by the current ACI 318 rectangular stress block and is increasingly unconservative as higher strength materials are used. Calibration of a rectangular stress block to address this condition leads to increased computational complexity. A triangular stress block, derived from the general shape of the stress-strain curve for high-strength concrete, provides a superior solution. The nominal flexural and axial strengths of 150 high-strength concrete columns tests are calculated using the proposed stress distribution and compared with the predicted strength using various design codes and proposals of other researchers. The proposed triangular stress model provides similar level of accuracy and conservativeness and is easily incorporated into current codes.

Finite Element Stress Analysis of Implant Prosthesis according to Position and Direction of Load (하중의 위치 및 경사에 따른 임플랜트 보철의 유한요소법적 응력분석)

  • Bae, Sook-Jin;Chung, Chae-Heon;Jeong, Seung-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.4
    • /
    • pp.257-268
    • /
    • 2003
  • The purpose of this study was to assess the loading distributing characteristics of implant prosthesis according to position and direction of load, under vertical and inclined loading using FEA analysis. The finite element model was designed according to standard fixture (4.1mm restorative component x 11.5mm length). The crown for mandibular first molar was made using UCLA abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric usp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment screw. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant in both vertical and oblique loading but stresses in the cancellous bone were low in both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. 4. The relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 5. The magnitude of the stress in the supporting bone, fixture and abutment screw was greater with the outward oblique loading than with the inward oblique loading and was the greatest under loading at the centric cusp in a $30^{\circ}$ outward oblique direction. Conclusively, this study provides evidence that bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. But it seems to be more important that how long is the distance from center of rotation of the implant itself to the resultant line of force from occlusal contact(leverage). The goal of improving implants should be to avoid bending of the implant.

Screening of Bacterial Strains for Alleviating Drought Stress in Chili Pepper Plants (고추 식물의 건조 스트레스 완화를 위한 미생물 선발)

  • Kim, Sang Tae;Yoo, Sung-Je;Song, Jaekyeong;Weon, Hang-Yeon;Sang, Mee Kyung
    • Research in Plant Disease
    • /
    • v.25 no.3
    • /
    • pp.136-142
    • /
    • 2019
  • Drought stress is considered as one of major abiotic stresses; it leads to reduce plant growth and crop productivity. In this study, we selected bacterial strains for alleviating drought stress in chili pepper plants. As drought-tolerant bacteria, 28 among 447 strains were pre-selected by in vitro assays including growth in drought condition with polyethylene glycol and plant growth-promoting traits including production of 1-aminocyclopropane-1-carboxylate deaminase, indole-3-acetic acid and exopolysaccharide. Sequentially, 7 among pre-selected 28 strains were screened based on relative water content (RWC); GLC02 and KJ40, among seven strains were finally selected by RWC and malondialdehyde (MDA) in planta trials under an artificial drought condition by polyethylene glycol solution. Two strains GLC02 and KJ40 reduced drought stress in a natural drought condition as well as an artificial condition. Strains GLC02 or KJ40 increased shoot fresh weight, chlorophyll and stomatal conductance while they decreased MDA in chili pepper plants under a natural drought condition. However, two strains did not show biocontrol activity against diseases caused by Phytophthora capsici and Xanthomonas campestris pv. vesicatoria in chili pepper plants. Taken together, strains GLC02 or KJ40 can be used as bio-fertilizer for alleviation of drought stress in chili pepper plants.

Data analysis for fatigue test of welded joint using structural stress (Structural stree를 이용한 피로실험 data 분석)

  • Park, Hyeong-Jin;Kim, Yu-Il;Gang, Jung-Gyu;Heo, Ju-Ho
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.82-84
    • /
    • 2005
  • Fatigue assessment of welded structure is very sensitive to the method of local stress determination. Normally, hot spot stress which is surface stress extracted from 0.5t, 1.5t away from weld toe is widely used to obtain local stress. However, this method has a lot of limitation in the evaluation of fatigue strength. Therefore, mesh has to comply with strict requirements since stress extracted from this method strongly rely on mesh size and element types. And that method does not cover the stress gradient through thickness direction since only surface stress is considered. Recently, new method to obtain local stress is proposed, which is structural stress. This method has an advantage, which is mesh intransitiveness and covering the effect of both bending and axial stress in local area. In this paper, fatigue test data for various welded joints was analyzed to review the reliability of structural stress. As a result, it is verified that S-N curve using structural stress guaranteed single master curve for various joint type and testing condition.

  • PDF

Horizontal Stress Based on the Calculation of Lateral Stress Ratio in Unsymmetrical Space (비대칭 공간의 수평응력비 산정에 따른 수평응력에 관한 연구)

  • Moon Chang-Yeul;Lee Soo-Ki;Kwon Seung-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.177-189
    • /
    • 2004
  • The backfilled space carl have various shapes such as vertical or lateral symmetric, unsymmetric slope depending on field conditions. Kellogg (1993) suggested the different equations for the backfill earth pressure and the lateral stress ratio considering that the stresses are different between the symmetrically sloped backfilled space and the vertical one. Kellogg (1993) assumed the stress generated on sloped wall surface as the simple internal friction angle of backfilled soil. However, Moon (1997) suggested modified Kellogg equation assuming that stress behavior in the sloped wall will be varied according to the rotation angle of principal stress and the friction of sloped wall surface. This study has compared and investigated the horizontal stresss of unsymmetrical backfilled space numerically and experimentally obtained when Kellogg lateral stress ratio is appled to and when average lateral stress ratio considering unsymmetric backfill slop of left and right are applied to the modified Kellogg equation. It is shown that the horizontal stress on the sloped wall has good match numerically and experimentally in the modified Kellogg equation when Kellogg's lateral stress ratio in symmetric condition is applied to the unsymmetric condition. But the horizontal stress on the vertical wall shows disagreement numerically and experimentally. The horizontal stress results in good agreement numerically and experimentally when the average lateral stress ratio of left and right at unsymmetric slop as applied to the modified Kellogg equation. Therefore, it is estimated that the application of the average lateral stress ratio to the left and right wall should be considered when backfilled space formed unsymmetric conditions.

Identification of Failure Cause for 300MW LP turbine Blade through Vibration Analysis (진동 해석을 통한 300MW급 저압터빈 블레이드의 손상 원인 규명)

  • Kim, Hee-Soo;Bae, Yong-Chae;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.794-799
    • /
    • 2005
  • The failure of blades frequently happened in the 300MW LP turbine until now and they are maintaining the blades periodically during outage. So the blade-disk system is analysed by FEM in order to identify the main cause of failure of blade row. It is found that the stress of root's hole is highest in comparison with other parts from the result of the steady stress analysis. Also, the two dangerous frequencies which is related to the resonance condition are found in the interference diagram. one is 1,516 Hz which is related to the operating speed. The other is 2,981 Hz which is related to the 1 nozzle passing frequency. The dynamic stress analysis is per-formed to identify more accurate root cause for failure of blade row. It is confirmed that the dynamic stress of the latter is higher than one of the former. From these results, it is concluded that the former has deeply something to do with the failure of blades more than the latter. Based on versatile investigation and deliberation, the change of blade's grouping is determined to avoid the resonance condition with the operating speed. After the blade grouping is changed, the former frequency vanish completely but the latter is still in existence in the interference diagram. Fortunately, It is confirmed that the dynamic stress of the new blade grouping is lower than one of the old blade grouping. 2 years has passed since modification and the LP turbine is operated well without failure so far.

  • PDF

Depression and Stress Related to Obesity among Normal, Obese, and Severe Obese Groups - Comparison among Normal, Obesity, and Severe Obesity Groups - (비만정도에 따른 우울 및 스트레스 - 정상체중, 비만, 고도비만 집단의 비교 -)

  • Nam, Sujung;Park, Jongho
    • Korean Journal of Human Ecology
    • /
    • v.21 no.6
    • /
    • pp.1199-1210
    • /
    • 2012
  • This study investigated the influence of obesity on depression and stress by analyzing the results of the national survey on health and nutrition. Relationships between normal, obese, and severely obese groups were investigated. The results of the study are as follows. First, obesity caused by demographic variables showed a relationship to both gender and average monthly income. In the case of the seriously obese group, females had higher rates of depression than males, and the high obesity group had lower average monthly income than the normal and obese groups. Second, obesity caused by health-related variables found that high blood pressure, hyperlipidemia, and diabetes that was not angina-related displayed higher rates of depression in the serious obesity group than in the other groups. As for subjective evaluations of one's own health condition, the serious obesity group showed a high tendency to evaluate their own health conditions negatively. Third, the difference between depression and stress related to obesity level showed no difference between the normal weight group and the obesity group; however, the seriously obese group demonstrated relatively higher occurrences of depression and higher stress scores. Fourth, the result for depression and stress level caused by demographic variables, health-related variables, and obesity demonstrated a direct relationship to gender, subjective level of satisfaction with one's personal finances, average monthly income, subjective perception of one's own health and severely obesity status. More specifically, it was found that the ratio of depression and stress score was higher when the subject was female, among those whose subjective evaluation of their own finances and health condition was negative, and those who suffered from severe obesity.

Root metabolic cost analysis for root plasticity expression under mild drought stress

  • Kano-Nakata, Mana;Mitsuya, Shiro;Inukai, Yoshiaki;Yamauchi, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.328-328
    • /
    • 2017
  • Drought is a major limiting factor that reduces rice production and occurs often especially under recent climate change. Plants have the ability to alter their developmental morphology in response to changing environment, which is known as phenotypic plasticity. In our previous studies, we found that one chromosome segment substitution line (CSSL50 derived from Nipponbare and Kasalath crosses) showed no differences in shoot and root growth as compared with the recurrent genotype, Nipponbare under non-stress condition but showed greater growth responses compared with Nipponbare under mild drought stress condition. We hypothesized that reducing root respiration as metabolic cost, which may be largely a consequence of aerenchyma formation would be one of the key mechanisms for root plasticity expression. This study aimed to evaluate the root respiration and aerenchyma formation under various soil moisture conditions among genotypes with different root plasticity. CSSL50 together with Nipponbare and Kasalath were grown under waterlogged conditions (Control) and mild drought stress conditions (20% of soil moisture content) in a plastic pot ($11cm{\times}14cm$, ${\varphi}{\times}H$) and PVC tube ($3cm{\times}30cm$, ${\varphi}{\times}H$). Root respiration rate was measured with infrared gas analyzer (IRGA, GMP343, Vaisala, Finland) with a closed static chamber system. There was no significant difference between genotypes in control for shoot and root growth as well as root respiration rate. In contrast, all the genotypes increased their root respiration rates in response to mild drought stress. However, CSSL50 showed lower root respiration rate than Nipponbare, which was associated by higher root aerenchyma formation that was estimated based on internal gas space (porosity) under mild drought stress conditions. Furthermore, there were significant negative correlations between root length and root respiration rate. These results imply that reducing the metabolic cost (= root respiration rate) is a key mechanism for root plasticity expression, which CSSL50 showed under mild drought.

  • PDF

A study on Mass production stage Tank Battle Management System Environmental Stress Screening test method and application improvement based on Production process data (생산 공정 자료 기반 양산단계 전차 전장관리체계 환경 부하 선별 시험 방법 및 적용 개선에 관한 연구)

  • Kim, Jang-Eun;Shim, Bo-Hyun
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.273-288
    • /
    • 2015
  • Purpose: In this study, we apply environmental stress screening (ESS) to battle management system (BMS) of a tank and use the ESS profile based on production process data, guided by MIL-HDBK-781/344/2164. Methods: To optimize ESS Profile of the BMS of a tank, we estimate ESS model parameters (e.g., defect density, screening strength) using primary production failure reporting and corrective action system (FRACAS) data of military supply contract firm. Results: First, we collect the Primary production FRACAS data of military supply contract firm. Second, we compute curve fitting approach to find patent defect density and latent defect density using FRACAS data. Third, we solve the equation of Defect Density(patent defect density + latent defect density)($D_{IN}$) and Screening Strength(SS) Using second step data. As a result of analysis according to the order, we calculate $D_{IN}$(Temperature stress case : 74.02, Vibration stress : 10.252) and : SS(Temperature stress case : 0.4632, Vibration stress : 0.4142) and confirm the Condition II-D based on MIL-HDBK-344. According to Condition II-D, it is necessary to modify existing ESS profile through decreasing the $D_{IN}$ and increasing the SS. Conclusion: Identification of defect causes through ESS approach reduce defect densities for production. It provides feedback to a lessons-learned data base to avoid similar problems on next generation tank BMS.

Identification of Failure Cause for 300 MW LP Turbine Blade through Vibration Analysis (진동 해석을 통한 300 MW급 저압터빈 블레이드의 손상 원인 규명)

  • Bae, Yong-Chae;Lee, Hyun;Kim, Hee-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1100-1107
    • /
    • 2005
  • The failure of blades frequently happened in the 300 MW LP(low pressure) turbine until now and they are maintaining the blades periodically during outage. So the blade-disk system is analysed by FEM in order to identify the main cause of failure of blade row. It is found that the stress of root's hole is highest in comparison with other parts from the result of the steady stress analysis. Also, the two dangerous frequencies which is related to the resonance condition are found in the interference diagram. One is 1,316 Hz. The other is 2,981 Hz which is related to the 1 nozzle passing frequency. The dynamic stress analysis is performed to identify more accurate root cause for failure of blade row It is confirmed that the dynamic stress of the former is higher than one of the latter From these results, it is concluded that the former has deeply something to do with the failure of blades more than the tatter. Based on versatile investigation and deliberation, the change of blade's grouping is determined to avoid the resonance condition with the operating speed. After the blade grouping is changed, the former frequency vanish completely but the latter is still in existence in the interference diagram. Fortunately, It is confirmed that the dynamic stress of the new blade grouping is lower than one of the old blade grouping. 2 years has passed since modification and the LP turbine is operated well without failure so far.