• Title/Summary/Keyword: Stress Waveform

Search Result 82, Processing Time 0.027 seconds

Effect of Stress Waveform on Corrosion Fatigue Crack Propagation in High Strength Steels-the Role of Anodic Dissolution Mechanism (고장력강의 부식피로균열전파에 미치는 하중파형의 영향과 양극용해기구의 역할)

  • 하회석;이성근
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.147-155
    • /
    • 1993
  • The effect of stress waveforms on corrosin fatigue and the role of dissolution mechanism in 3NilCr steel and 20Ni maraging steel have been investigated in aerated 3% NaCl solution and synthetic seawater under sinusoidal, triangular, square, positive sawtooth, negative sawtooth, and trapezoidal stress waveforms with open circuit at frequency of 1Hz and stress ratio of 0.1. The crack growth rates under square waveform were substantially lower than under sinusoidal and triangular waveforms, but the crack growth rates under sinusoidal waveform were slightly higher under triangular waveform. For a given frequency the growth rates under the positive sawtooth waveform are higher than those under the negative sawtooth waveform. The fatigue crack growth rates of most specimens were in good agreement with the values calculated by the model based on the dissoultion mechanism.

  • PDF

Analysis for the Fluctuation of the Photoplethysmographic Waveform derived by Temperature Stress of Measuring Position (측정부 온도 부하에 따른 광용적맥파 파형 요동 특성 분석)

  • Lee, Chungkeun;Shin, Hangsik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.304-309
    • /
    • 2015
  • Applicable range of Photoplethysmography (PPG) becomes wider as a non-invasive physiological measurement technique. However, PPG waveform is easy to be distorted by ambient light or vascular variation from temperature changes. Especially, irregular variation of PPG waveform caused by ambient temperature not only severely distorts the PPG, but also leads miss interpretation in clinical applications. Therefore, the investigation of between temperature and PPG waveform is quite important in using PPG. The purpose of this research is to quantify the PPG waveform characteristic and to investigate the waveform variation following the temperature change on measuring site. To quantify the fluctuation of PPG waveform, we use two techniques; detrended fluctuation analysis (DFA) and AC/DC analysis of PPG. We record PPG under temperature stress, which applied by medical use heat pack ($40^{\circ}C$) and ice pack ($0^{\circ}C$). Ten participants were applied to the experiment, and the result was evaluated to approve the temperature effect with statistical method, Wilcoxon signed rank test. The result shows that the AC component (p<0.05) and perfusion index DFS scale exponent (p<0.01) of PPG have the significance to temperature stress except for a DC component of PPG.

Effects of the Velocity Waveform of the Physiological Flow on the Hemodynamics in the Bifurcated Tube

  • Roh, Hyung-Woon;Kim, Jae-Soo;Suh, Sang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.296-309
    • /
    • 2003
  • The periodicity of the physiological flow has been the major interest of analytic research in this field up to now Among the mechanical forces stimulating the biochemical reaction of endothelial cells on the wall, the wall shear stresses show the strongest effect to the biochemical product. The objective of present study is to find the effects of velocity waveform on the wall shear stresses and pressure distribution along the artery and to present some correlation of the velocity waveform with the clinical observations. In order to investigate the complex flow phenomena in the bifurcated tube, constitutive equations, which are suitable to describe the rheological properties of the non-Newtonian fluids, are determined, and pulsatile momemtum equations are solved by the finite volume prediction. The results show that pressure and wall shear stresses are related to the velocity waveform of the physiological flow and the blood viscosity. And the variational tendency of the wall shear stresses along the flow direction is very similar to the applied sinusoidal and physiological velocity waveforms, but the stress values are quite different depending on the local region. Under the sinusoidal velocity waveform, a Newtonian fluid and blood show big differences in velocity. pressure, and wall shear stress as a function of time, but the differences under the physiological velocity waveform are negligibly small.

Waveform characterization and energy dissipation of stress wave in sandstone based on modified SHPB tests

  • Cheng, Yun;Song, Zhanping;Jin, Jiefang;Wang, Tong;Yang, Tengtian
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.187-196
    • /
    • 2020
  • The changeable stress environment directly affect the propagation law of a stress wave. Stress wave propagation tests in sandstone with different axial stresses were carried using a modified split Hopkinson Pressure bar (SHPB) assuming the sandstone has a uniform pore distribution. Then the waveform and stress wave energy dissipation were analyzed. The results show that the stress wave exhibits the double peak phenomenon. With increasing axial stress, the intensity difference decreases exponentially and experiences first a dramatic decrease and then gentle development. The demarcation stress is σ/σc=30%, indicating that the closer to the incident end, the faster the intensity difference attenuates. Under the same axial stress, the intensity difference decreases linearly with propagation distance and its attenuation intensity factor displays a quadratic function with axial stress. With increasing propagation distance, the time difference decays linearly and its delay coefficient reflects the damage degree. The stress wave energy attenuates exponentially with propagation distance, and the relations between attenuation rate, attenuation coefficient and axial stress can be represented by the quadratic function.

A Study of the Effect of Stress Waveform on the Behavior of High Temp. Fatigue Crack Propagation Using J Parameters (J파라미터를 이용한 고온피로균열전파 거동에 미치는 응력파형 영향의 연구)

  • Hur, Chung-Weon;Park, Won-Jo
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.8-12
    • /
    • 2000
  • The fatigue crack propagation tests were performed in triangular and holding-time stress waveforms at $650^{\circ}C$. The behavior of fatigue crack propagation was investigated according to waveform. The analysis of high temperature fatigue crack propagation by the stress intensity factor range ${\Delta}K$, elastic fracture mechanics parameter, was not available. The behaviors of high temperature fatigue crack propagation by the J-integral(${\Delta}J_f$, J' and ${\Delta}J_c$), elasto-plastic fracture mechanics parameter, were investigated in a number of stress waveforms. The fast-fast waveform exhibited cycle-dependent(fatigue type), the slow-fast and the hold time with 500sec waveforms appear to be time-dependent(creep type) and the fast-slow and the hold time with 5, 25sec waveforms exhibited conbined behavior of both types(fatigue-creep conbined type).

  • PDF

Comparison of the Vibration Principal Stress by Experimental and Numerical Waveform (실측 파형과 수치 파형에 의한 진동주응력 비교)

  • Hong, Woong-Ki;Song, Jeong-Un;Park, Young-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.609-615
    • /
    • 2012
  • In recent years, the development of computer technique was possible to the simulation analysis of the structure caused by ground vibration. Generally, finite element method(FEM) has been used in these structural analysis. In this study, it was calculated to the vibration energy as measuring vibration waveform, and estimated about principal stress due to medium characteristics of the ground as processing dynamic analysis by the vibration energy. The results are as follows : Firstly, the principal stress distribution in all mediums was different due to a medium condition, and the principal stress at concrete medium was represented to difference due to physical characteristics. Secondly, the principal stress by time increasing was represented to maximum amplitude within 0.03 second. And also, the principal stress after maximum amplitude was very large at concrete medium, which was considered to be formed compression or tension range at a medium boundary. Thirdly, the variation of principal stress at concrete medium was represented in the order of RC medium, NC=H medium, NC=S medium. It was considered that the vibration energy propagated fast when a medium have a big elasticity and density.

Effects of Acupuncture at GV 20(Baihui) Evaluated by the Second Derivative of Photoplethysmogram Waveform under Stress (백회혈(百會穴) 자침(刺鍼)이 스트레스 상태에서의 가속도맥파에 미치는 영향)

  • Lee, Jin-Hwan;Kim, Jin-Yi;Kim, Soo-Jung;Seo, Joo-Hee;Sung, Woo-Yong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.21 no.3
    • /
    • pp.19-27
    • /
    • 2010
  • Objectives : This study was designed to report the effect of acupuncture at GV 20(Baihui) evaluated by the second derivative of photoplethysmogram waveform(SDPTG) under stress. Methods : 15 healthy volunteers participated in this study. 1. After 5 minutes rest, mental stress was provided for 5 minutes. And then subjects rested for 15 minutes. SDPTG was recorded before and after mental stress and after 15 minutes restness. 2. After 5 minutes rest, mental stress was provided for 5 minutes. And acupuncture at GV 20 remained for 15 minutes. SDPTG was recorded before and after mental stress and after 15 minutes acupuncture. Results : 1. Mental Stress didn't make significant change at SDPTG. 2. In a comparison of pre-acupuncture and post-acupuncture at the GV 20, b/a ratio(P<0.05) and Sano aging index(P<0.05) was decreased significantly. Conclusions : We concluded that acupuncture at the GV 20 may be effective method to recover vascular function.

A Study of Driver Brain Wave Characteristics through Changes in Headlamp Brightness

  • Kim, Hyun-Ji;Kim, Hyun-Jin;Kim, Gi-Hoon;Lee, Chang-Mo;Kim, Hoon;An, Ok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.1-6
    • /
    • 2007
  • In this study, tests of brain waves were carried out to investigate the physiological characteristics of drivers during a change of headlight brightness. The participants were 20 males in their 20s. Twenty-three different conditions combining the waveform of light, voltage, and alteration time were used. The measurement of brain waves was performed by an internationally standardized 10-20 method using LXE3232-RF. The results were as follows. 1. From the results of the brain wave map analysis, it was suggested that waveform A increases mental stress and waveform B affects mental and visual stress. The longer the stimulation time, the more stress level was detected. 2. The voltage alteration time of the B waveform should be kept to less than 1500msec, while the voltage should not fall below 11.5[V].

A Study on Driver's Perception over the Change of the Headlamp's Illuminance : 4. Test and analysis of Driver's brain wave (전조등 조도변동에 대한 운전자의 인식연구 : 4. 운전자의 뇌파측정 및 분석)

  • An, Ok-Hee;Kim, Hyun-Jin;Kim, Gi-Hoon;Kim, Hoon;Kim, Hyun-Ji
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.125-130
    • /
    • 2006
  • In this study, tests of brain waves were carried out to investigate the driver's physiological characteristics by the change of the headlight. The participants were 20 men in their 20s and twenty-three different conditions in combinations of waveform of light, voltage, and alteration time were used. The measurement of the brain waves was performed by internationally standardized 10-20 method using LXE3232-RF. The results were analyzed by Power Spectrum Analysis using alpha-, and beta-wave and by the analysis of different brain domains using Brain wave Map. The results were as follows. 1. From the results of the Brain wave Map analysis, it was suggested that A waveform increases mental stress and B waveform affects mental and visual stress. The longer the stimulation time, the more stress level was detected. 2 The voltage alteration time of B waveform should be kept less than 1500msec, and the voltage should not fall below 11.5V.

  • PDF

A Study on Temperature Rising near Fatigue Crack Tip at Cryogenic Temperature (극저온 환경에서의 피로균열 선단의 온도상승에 관한 연구)

  • ;Maekawa, I.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.79-86
    • /
    • 1995
  • The structural materials for cryogenic technology have been recently developed to support the many modern large-scale application from superconducting magnets for nuclear fusion reactor, magnetic levitation railway to LNG tankers. However it is pointed out that quenching phenomenon is one of the serious problems for the integrity of these applications, which is mainly attributed to the rapid temperature rising in the material due to some extrinsic factors of structures. From the viewpoint of fracture mechanics, it is therefore very important to clarify the mechanism of temperature rising of structural material due to cyclic loading at cryogenic temperature. From this purpose, fatigue test was carried out for high manganese steel at liquid helium temperature(4.2K) using triangular stress waveform to identify both the mechanism of temperature rising near crack tip and the effect of loading stress waveform on temperature rising near crack tip and the effect of loading stress waveforms on temperature rising. As the results, two types of temperature rising, that is, regular and burst types were observed. And a periodical temperature rising corresponding to the stress waveforms was also found. The peaks of the temperature rising were recorded near both the maximum and the minimum values of the applied stress. The sudden temperature rises, which indicated the higher values than those of periodical temperature rises under the repetition of stress, were observed at the final region of crack growth. It was shown that the peak values of the temperature rising increased with stress intensity factor range.